
Vision by Alignment

by

Adam Davis Kraft
B.S., Massachusetts Institute of Technology (2005)

M.Eng., Massachusetts Institute of Technology (2008)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

© Adam Davis Kraft, MMXVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

January 18, 2018

Certi�ed by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Patrick H. Winston

Ford Professor of Arti�cial Intelligence and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair of the Department Committee on Graduate Students



2



Vision by Alignment
by

Adam Davis Kraft

Submitted to the Department of Electrical Engineering and Computer Science
on January 18, 2018, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Human visual intelligence is robust. Vision is versatile in its variety of tasks and operating condi-
tions, it is �exible, adapting facilely to new tasks, and it is introspective, providing compositional
explanations for its �ndings. Vision is fundamentally underdetermined, but it exists in a world
that abounds with constraints and regularities perceived not only through vision but through
other senses as well.

These observations suggest that the imperative of vision is to exploit all sources of information
to resolve ambiguity. I propose an alignment model for vision, in which computational specialists
eagerly share state with their neighbors during ongoing computations, availing themselves of
neighbors’ partial results in order to �ll gaps in evolving descriptions. Connections between
specialists extend across sensory modalities, so that the computational machinery of many senses
may be brought to bear on problems with strictly-visual inputs.

I anticipate that this alignment process accounts for vision’s robust attributes, and I call this
prediction the alignment hypothesis. In this document I lay the groundwork for evaluating the
hypothesis. I then demonstrate progress toward that goal, by way of the following contributions:

• I performed an experiment to investigate and characterize the ways that high-performing
computer-vision models fall short of robust perception, and evaluated whether alignment
models can address the shortcomings. The experiment, which relied on a procedure to
remove signal energy from natural images while preserving high classi�cation con�dence
by a neural network, revealed that the type of object depicted in the original image is a
strong predictor of whether humans recognize the reduced-energy image.

• I implemented an alignment model based on a network of propagators. The model can use
constraints to infer locations and heights of pedestrians and locations of occluding objects
in an outdoor urban scene. I used the results of the e�ort to re�ne the requirements of
mechanisms to use in building alignment models.

• I implemented an alignment model based on neural networks. Alignment-motivated design
empowers the model, trained to estimate depth maps from single images, to perform the
additional task of depth super-resolution without retraining. The design thus demonstrates
�exibility, a property of robust vision systems.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Arti�cial Intelligence and Computer Science



Acknowledgments
Foremost I thank my advisor, Patrick Winston. My meandering path through AI research has
given me the impression that AI progress will improve dramatically when more people adopt a
few of Patrick’s habits and ideas. There is no substitute for learning Patrick’s habits and ideas
from Patrick. If you do not have that opportunity, though, then read the rest of this paragraph
because it will make you smarter. To understand human intelligence, you must reject all meager
proxies for it. Seek a principled approach, reject mechanistic approaches, and do not compromise.
Tell yourself the right story. Explain everything as simply and clearly as possible. Have a vision
that is worth dedicating an entire career to, and solve problems that make progress toward your
vision. When you tell people about the problems that you solve, make sure you �rst tell them
what your vision is. Tell them in a way that will inspire somebody to dedicate an entire career to
it.

Gerald Sussman and Shimon Ullman served on my thesis committee. Gerry’s thoughtful cri-
tique of this document was invaluable. I have come to appreciate that an hour-long conversation
with Gerry easily imparts weeks of ideas to revisit, and I’m grateful to have had the opportu-
nity to work with him. Similarly, Shimon’s work has always inspired me, and has helped me to
understand which problems in vision are essential to solve.

I am grateful to all of my friends and colleagues at MIT CSAIL and especially to Dylan Holmes
and Michael Fleder. I thank Dylan for patient critique, for countless conversations about this
work, and for sharing a bright outlook on a future with robust AI. Dylan generously applied his
expertise to design several of the best illustrations in this document. I have been very fortunate
to bene�t from Michael’s deep understanding of machine-learning concepts and from his talent
for clear explanation.

I owe a debt of gratitude to my friends who read this document at various stages of completion
and provided me with feedback: to Avril Kenney for her extremely thorough and perceptive
attention to detail and for keeping me honest; to Blake Stacey, whose science writing expertise
led to enormously helpful suggestions; and to Brian Neltner, for holding me accountable to high
standards. Additionally, Robert McIntyre generously supplied me with a working set of custom
tools and templates for compiling this document.

Michael Coen, Je�rey Siskind, Gadi Geiger, and Sajit Rao provided inspiration for this work,
particularly in its early stages. Their work continues to inspire me. Gadi’s weekly research meet-
ing was an invaluable resource, early on in this work.

Generous support through DARPA and NSF made this work possible. I am especially grateful
to James Donlon for his vision and leadership in both the Mind’s Eye and Robust Intelligence
programs. This work was sponsored by awards FA8750-05-2-0274, D11AP00250, W911NF-10-2-
0065, and IIS-1421065.



Contents

1 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Mechanisms of alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Propagator networks . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Probabilistic graphical models . . . . . . . . . . . . . . . . . . . 16
1.2.3 Restricted Boltzmann machines . . . . . . . . . . . . . . . . . . 17
1.2.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Testing ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Problems not to use, and why . . . . . . . . . . . . . . . . . . . 18
1.3.2 Problems to use, and why . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Characterizing Neural Net Classi�cation . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Network models and images . . . . . . . . . . . . . . . . . . . . 26
2.2.2 signal-energy reduction algorithm . . . . . . . . . . . . . . . . . 26
2.2.3 Reduction algorithm design issues . . . . . . . . . . . . . . . . . 28

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Descriptiveness of DCNN models . . . . . . . . . . . . . . . . . 38
2.4.2 Class speci�city of model descriptiveness . . . . . . . . . . . . . 40
2.4.3 Ruling out alternatives: a DCNN strategy . . . . . . . . . . . . . 41
2.4.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Foundational Work in Constraint Propagation . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Observations about constraint propagation systems . . . . . . . . . . . . . 44
3.3 Applications of constraint propagation in vision . . . . . . . . . . . . . . . 46

3.3.1 Shape from shading . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Waltz’s 3D-labeling procedure . . . . . . . . . . . . . . . . . . . 46
3.3.3 Hinton’s work on relaxation . . . . . . . . . . . . . . . . . . . . 47

3.4 The propagator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Processing a Scene with Propagators . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Locating foreground regions . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Tracking objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Scarcity of strong constraints . . . . . . . . . . . . . . . . . . . 82
4.4.2 Brittleness of logical absolutes . . . . . . . . . . . . . . . . . . . 82
4.4.3 Incorrigibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.4 Problems of scale . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.5 Where to go next . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 Building Neural Networks for Alignment . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Forti�cation against adversarial examples . . . . . . . . . . . . 95
5.4.2 Semantically meaningful ports . . . . . . . . . . . . . . . . . . . 96
5.4.3 Empirically successful foundation . . . . . . . . . . . . . . . . . 97

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Training infrastructure . . . . . . . . . . . . . . . . . . . . . . . 99
5.6.2 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.3 Training particulars . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.5 External signal introduction . . . . . . . . . . . . . . . . . . . . 103

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7.1 Extending ally networks . . . . . . . . . . . . . . . . . . . . . . 107
5.7.2 Applying immutable di�erentiable joints . . . . . . . . . . . . . 107

5.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A Appendix: Neural Network Methods . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 Bootstrapping fully-connected layers from convolutional layers . . . . . . 113
A.3 Batch normalization on multi-GPU systems . . . . . . . . . . . . . . . . . 117

A.3.1 Overview of batch normalization . . . . . . . . . . . . . . . . . 117
A.3.2 Modi�cations to the batch normalization algorithm . . . . . . . 118

A.4 Improving transfer learning with batch normalization retro�t . . . . . . . 119
A.5 Neural network prototyping design issues . . . . . . . . . . . . . . . . . . 123



List of Figures

1 Visual summary of highlights and developments . . . . . . . . . . . . . . . . . . 10
2 Motivational framework for the work described in this document . . . . . . . . . 14
3 Reduced-energy images that a neural network recognizes . . . . . . . . . . . . . 23
4 The Kanizsa Triangle illusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Example reduced-signal-energy images . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Signal-energy reduction steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Adversarial examples generated by 3 methods . . . . . . . . . . . . . . . . . . . . 30
8 Energy ratios per Laplacian-pyramid level . . . . . . . . . . . . . . . . . . . . . . 31
9 Invariance of signal-energy reduction algorithm to RNG initialization . . . . . . . 32
10 Residual and minimal-energy images from iterative energy reduction . . . . . . . 33
11 Accumulated minimum-energy images . . . . . . . . . . . . . . . . . . . . . . . . 34
12 Class-speci�city of minimum-energy image recognizability . . . . . . . . . . . . . 35
13 Experiment user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14 Most-often and least-often recognized images by study participants . . . . . . . . 38
15 Dynamic range of pre-softmax activation values . . . . . . . . . . . . . . . . . . . 39
16 Statistical reframing of Waltz’ procedure . . . . . . . . . . . . . . . . . . . . . . . 48
17 Example output of propagator system . . . . . . . . . . . . . . . . . . . . . . . . . 52
18 Comparison of propagator and pipeline approaches . . . . . . . . . . . . . . . . . 53
19 Data-collection apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
20 Stereo images from the camera array . . . . . . . . . . . . . . . . . . . . . . . . . 55
21 Inheritance and interface summary for low-level propagator system . . . . . . . . 56
22 Propagator subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
23 Flow graph of low-level processing . . . . . . . . . . . . . . . . . . . . . . . . . . 60
24 Summary of low-level processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
25 Raw input to the tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
26 Output of track merging via symmetric cascade . . . . . . . . . . . . . . . . . . . 71
27 Edge-present frame-count histogram composite . . . . . . . . . . . . . . . . . . . 73
28 Optical �ow and color histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
29 Output of least squares estimation of the ground plane . . . . . . . . . . . . . . . 75
30 Output of propagator relaxation of the ground plane . . . . . . . . . . . . . . . . . 76
31 Locations of occluders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
32 Top-down propagator network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
33 Track a�ected by propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
34 A three-way and multi-way sum propagator . . . . . . . . . . . . . . . . . . . . . 84
35 A three-way sum propagator with a constraint on the total . . . . . . . . . . . . . 87

7



36 Dual-mode estimation neural network . . . . . . . . . . . . . . . . . . . . . . . . 90
37 High-level depth-estimation network design . . . . . . . . . . . . . . . . . . . . . 96
38 Neural network for depth estimation . . . . . . . . . . . . . . . . . . . . . . . . . 98
39 Outputs of two depth-estimation networks . . . . . . . . . . . . . . . . . . . . . . 104
40 Ally network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
41 Signal-introduction depth up-sampling . . . . . . . . . . . . . . . . . . . . . . . . 106
42 GAN compared to MSE-trained network . . . . . . . . . . . . . . . . . . . . . . . 109
43 Conversion of a convolutional layer to an FC layer . . . . . . . . . . . . . . . . . . 116

8



1. Vision

1 Vision
As the remnants of AI winter thaw rapidly, excitement over machine learning’s rapid pace of
achievement is palpable. Machines now outperform humans on tasks such as object-detection, a
milestone that was far beyond reach less than a decade ago. Perhaps the greatest opportunity in
AI research, though, is the opportunity to gain a deep computational understanding of the way
people think. Despite outstanding technical achievements, progress on this front has been slow.
The disparity between performance and understanding is especially striking in computer vision.

To understand human visual intelligence is to account for its astonishing versatility, its �exi-
bility, and the coherence and depth of the explanations it o�ers for its observations. A closer look
at the state of the art in computer vision reveals that it has not yet achieved any these abilities,
despite the tremendous technological value of its achievements to date.

This is the story of my �rst steps toward describing, implementing, and understanding robust
visual intelligence. The story revolves around the alignment hypothesis that you learn about
in Section 1.1. The highlights and major developments in the story are depicted in Figure 1.

In Chapter 2, you will �nd out about an experiment in which I investigated and character-
ized discrepancies between a neural network’s visual ability and human visual intelligence. The
implications of the experiment reinforce the need for robust vision architectures. As part of the
experiment, I developed a procedure to isolate the features of images that support con�dent clas-
si�cation by a neural network, and asked whether those features also support classi�cation by
humans. A surprising outcome of the experiment is that whether or not the neural network
features are human-recognizable depends primarily on the type of object depicted in the image,
rather than on other details of the image.

Then, in Chapters 3 and 4, you will learn about my work in implementing alignment-driven
vision systems using a propagator architecture. A signi�cant outcome of that work is a vision
system that tracks people as they move, and uses the tracking along with constraints like people
must be supported in order to walk to infer geometric properties of the scene and the actors.

In Chapter 5 you will see my �rst steps toward applying alignment principles to the design of
neural networks. A signi�cant result is that the design empowers a neural network to accomplish
the task of depth super-resolution despite that it was trained just for the task of depth estimation.

9



1. Vision

(a) Images and minimal features

(b) Pedestrians and scene geometry

(c) Images and generated depth maps

Figure 1: Visual summary of highlights and developments
Inputs followed by outputs, shown in (a), of a signal-energy reduction algorithm that preserves neural
network classi�cation con�dence. A propagator system, with output shown in (b), uses the tracks of
pedestrians combined with knowledge about average human size to help identify the ground plane and
re�ne heights of pedestrians. A neural network performs both depth estimation from single images, and
depth up-sampling, with inputs and outputs shown in (c).

10



Motivation

1.1 Motivation
Human visual intelligence combines a remarkable set of properties. Vision is versatile in its ca-
pability to perform many important tasks, often simultaneously and under widely varying condi-
tions. Vision is �exible, able to adapt to new tasks quickly and with little preparation, including
tasks such as driving that are very di�erent from those most in�uential over our evolutionary
development. Vision is introspective, providing us with mutually reinforcing ways to corrob-
orate, understand and explain its �ndings: objects have discernible parts and properties, events
have causes and e�ects, and actors have intent.

How can we capture natural vision’s versatility, �exibility, and introspection in a computa-
tional model? How can we move on to engineer AI systems that have these properties, so that
we may interact with the systems in our natural environment and on our terms? To take steps
toward answering these questions, I observe four factors that most prominently constrain and
guide the development of natural vision systems:

1. The process of forming a 2D image from a natural world state is not invertible. Further
complicating matters, the signal that eyes receive from the world is fragmentary and am-
biguous. Signal noise, occlusion, and other environmental conditions guarantee that, in all
cases of interest, there is no simple heuristic to reconstruct the generating world state from
an image.

2. Our many sensory modes collect information about percepts simultaneously. For example,
an infant’s hand making contact with an object causes the infant to perceive impact via
vision, hearing, touch, and proprioceptive sensory modes.

3. Constraints and regularities in the world create abundant contextual cues for vision. Cer-
tain objects are more likely than others to move, be composed of speci�c parts and ma-
terials, or participate in common con�gurations with other objects. Physical constraints
force objects to be supported, and, for example, very distant objects to appear blue from
atmospheric color distortion.

4. Throughout evolution, our need to understand visual stimuli has been directed by goals.
Necessities of life such as �nding food and avoiding danger ruthlessly optimized the visual
intelligence of our recent ancestors for those goals, without regard for any notion of ground
truth independent of those goals. The architectural results of that optimization provide the
foundation for human visual intelligence.

Each observation has strong implications for natural vision systems. Vision is fundamentally
hard because the signal our eyes receive is ambiguous. A path toward resolving such ambiguity
exists only because sensory modes collect information simultaneously, and because constraints
and regularities abound in nature. Because vision developed to serve survival goals, whatever
mechanisms evolved to resolve visual ambiguity must do so aggressively, exploiting all avail-
able sources of information with minimal delay. The four observations together suggest that the
computational imperative (Winston and Holmes [2018]) of natural vision systems is to exploit
all sources of information to resolve ambiguity in a goal-directed framework. This computa-
tional imperative necessarily blurs the boundaries between vision systems and other perceptual
machinery.

11



Motivation

Such intuition stimulates what I call the alignment hypothesis: robust perception re-
quires pervasive alignment of partial information throughout a multimodal network.
In this statement of the hypothesis, robust perception refers to perception that achieves the
versatile, �exible, and introspective attributes of natural systems. Despite recent sweeping ad-
vances in computer vision, vision systems today do not readily generalize to new tasks without
extensive supervised training, and they do not have access to the detailed compositional interpre-
tation of visual stimuli a�orded to us by our own vision systems. Recent work further indicates
that failure to achieve detailed interpretation is a fundamental limitation of feedforward systems
(Ben-Yosef et al. [2015]).

Alignment of partial information refers to the policy where subsystems share partial re-
sults of computations throughout an ongoing computation, in contrast with staged architectures
where information is passed onward only upon completion of a processing stage. In order for
the sharing policy to succeed, computational elements must be able to align and integrate up-
dates from their neighbors with the elements’ own internal states. The alignment should allow
elements to enhance, accelerate, or direct their own ongoing computation. The alignment policy
is inspired in part by the work of Ullman [1991].

The requirement that such alignment pervade a multimodal network ensures that the
power of the entire perceptual apparatus may be brought to bear on any stimulus, regardless
of whether the stimulus itself is multimodal or if it presents in one sensory modality alone. Vi-
sual machinery can then recruit machinery used in processing other modalities in order to in-
terpret purely-visual stimuli. Coen [2006] recognized the disambiguating power of stimuli that
occur simultaneously in di�erent modalities, and evidence of cross-modal perception abounds;
the McGurk e�ect (McGurk and MacDonald [1976]) in which vision a�ects perception of speech
sounds is one well-known example. The same alignment mechanism that recruits processing
from other sensory modalities may also exploit contextual constraints and regularities within
the visual mode, by pruning unlikely interpretations and suggesting interpretations for ambigu-
ous visual stimuli based on contextual cues.

The alignment hypothesis can help answer the questions of how to build computational mod-
els of our visual competence, and how to build AI vision systems that share our deep analytic
capacity for visual phenomena. In particular, the alignment hypothesis makes strong predic-
tions about the types of computational models that would most successfully solve visual prob-
lems. Such models would consist of many components that integrate information from multiple
sources, each �exibly handling fragmentary information, performing small steps of a distributed
computation and then eagerly forwarding the partial results to neighboring nodes. Such dis-
tributed computation would likely bene�t from bidirectional information sharing, with nodes
communicating in a common language of representational elements via their shared interfaces.
Global problems would be solved by the sustained local interactions of components across such
shared interfaces, so long as the process converged to a solution.

The computational properties called for by the alignment hypothesis point toward the fam-
ily of relaxation algorithms. Relaxation algorithms de�ne global computations solely in terms
of local interactions. The interactions move the global con�guration incrementally toward con-
sistency under certain constraints, or toward optimality while respecting constraints. Due to
the strong locality present in images and video, relaxation algorithms have found many success-
ful applications dating back to early work on estimating shape from shading (Horn and Brooks
[1989]), and on discovering global interpretation of images from constrained local interactions

12



Mechanisms of alignment

(Waltz [1972], Hinton [1978]). Relaxation algorithms intrinsically �t asynchronous, parallel, and
distributed models of computation as a result of their distributed state and localized communica-
tion. The natural �t to parallel architectures has the welcome side e�ect of increasing scalability
and biological plausibility of many relaxation algorithms. The desirable properties of relaxation
algorithms thus guide the search for the best mechanisms with which to test the alignment hy-
pothesis.

This brings the analysis to the point of concrete implementation. My goal has been to gather
evidence in favor of the alignment hypothesis, by showing that systems built upon the com-
putational foundations circumscribed by the alignment hypothesis exhibit versatility, �exibility,
and introspection characteristic of natural vision systems. What mechanisms possess the desired
computational properties? In Section 1.2 I present several candidates, from which I identify two
mutually compatible alternatives that I develop further: propagators and neural networks.

In this section I have motivated my thesis in a way that is inspired by Marr’s three levels of
process understanding (Marr [2010]). I identi�ed three aspects of natural vision, that the state of
the art in computer vision falls short of modeling: the aspects of versatility, �exibility, and intro-
spection. I made four observations pertaining to vision: its fundamental problem of ambiguity, its
interaction with concurrent modalities, the constraints and regularities of its environment, and its
goal-directed origins. I described how the observations elucidate vision’s computational impera-
tive and I presented my hypothesis that robust perception requires pervasive alignment of partial
information throughout a multimodal network. This alignment hypothesis, and the evidence
I have gathered in support of it, represent a step toward a computational theory of vision that
accounts for natural vision’s versatility, �exibility, and introspective capability. The alignment
hypothesis also points toward a family of algorithms, relaxation algorithms, as fertile ground
for discovery of speci�c algorithms for robust vision, and their empowering representations. In
the next section I discuss candidate implementation mechanisms that �t into my motivational
framework, outlined in Figure 2.

1.2 Mechanisms of alignment
The alignment hypothesis introduced in Section 1.1 has implications for choices of algorithms
and mechanisms in models of vision. Because the best way to evaluate the alignment hypoth-
esis is to build a working system whose components and internal interactions can be analyzed,
I adopt the methodology of using the alignment hypothesis and its algorithmic and mechanis-
tic implications as guides for building systems, with the aim that observed robust performance
of the systems yields evidence in favor of the alignment hypothesis. Such evidence would sug-
gest that the alignment hypothesis serves as a promising start in the greater endeavor to �nd
a computational theory of robust vision. As a �rst step, I evaluate several mechanisms as po-
tential testing grounds for the alignment hypothesis: probabilistic graphical models, restricted
Boltzmann machines (RBMs), propagator networks, and neural networks.

1.2.1 Propagator networks

Propagator networks include a variety of mechansims stemming from early work by Sussman
and Steele [1980] that share a common style of information plumbing. I focus on propagator net-
works of Sussman and Radul [2009]. These propagator networks consist of independent stateless

13



Mechanisms of alignment

Figure 2: Motivational framework for the work described in this document

machines connected by means of cells that store state. A distinguishing property of propagator
networks that sets them apart from most programming systems is the way that cells’ states are
updated: whereas variables in programming systems are typically updated from a single source
at a time, cells in a propagator network can receive multiple updates asynchronously, in such a
way that the information stored by the cell monotonically increases. As a concrete simple ex-
ample, consider a scalar, real-valued cell c. An update u1 imposes the constraint c ≥ 3, which
increases the cell’s speci�city by removing all values that violate the constraint. Another update
u2 imposes the constraint c ≤ 3, resulting in the cell’s value becoming maximally speci�ed as
the set containing just 3. In this example, it does not matter which order the updates are applied.
The cell’s connected propagators are noti�ed whenever its value is updated, which can cause the
increase of speci�city in c to propagate elsewhere in the network, potentially resulting in fur-
ther speci�city elsewhere in the network and in c itself. By storing each update along with its
computational provenance, the network can additionally answer questions about why a cell does
not contain a particular subset of its maximum-allowable domain: the question why does c not
contain 4? produces the answer update u2.

The propagator architecture has several clear advantages as an alignment mechanism and
as an engineering framework. Autonomy of the individual cells and propagator units permits
straightforward parallelism. The monotonicity requirement of cells guarantees that propagators

14



Mechanisms of alignment

can only increase the information content of their connected cells. Here, information content
is used informally to refer to the degree of speci�city of cells’ values. This monotonicity re-
quirement, combined with the declarative nature of propagators that operate by transforming
and applying constraints, neatly factors apart questions about what components in the network
do from how computation is scheduled in the network. The natural bidirectionality that arises
from framing computation as propagation is extremely powerful: rather than explicit inputs and
outputs, propagators enforce relations among their connected cells, allowing information to �ow
through the propagator units in potentially any direction. The ability of cells to accept updates
from several, possibly redundant, computational sources permits fast approximate computational
methods to coexist with thorough, expensive methods with no loss of generality. The same
multiple-source ability permits collaboration between di�erent ways of solving a problem, for
example collaboration between sensory modes.

Another potential bene�t of the propagator architecture is that it provides transparency and
interpretability of low-level semantics. In connectionist architectures, practitioners are limited to
reasoning only in terms of statistics and in terms of geometric metaphors for high-dimensional
latent spaces. The low-level implementation of such systems consists of ad-hoc plumbing �lled
with ostensible “semantic juice” (Donahue et al. [2016]), too murky to permit analysis of anything
beyond its emergent behaviors. Contrast this semantic-juice limitation with the ability a�orded
to system designers by the propagator architecture, to specify �ne-grained interactions between
components whose semantic interfaces are derived via principled methods. In the propagator
design framework, complex and sometimes unanticipated behaviors arise from the net e�ect of
many carefully-designed simple interactions, whereas in frameworks such as deep feature learn-
ing, the net e�ect of the system is controlled in a top-down manner via some learning strategy,
but the �ne-grained interactions of components exhibit a complexity that lies outside the scope
of the top-down analytic methods. Super�cially, this appears to be a trade-o� between coarse-
and �ne-grained interpretability. With carefully designed primitives, however, the high level se-
mantics of propagator networks are interpretable and correct even when unanticipated by the
design—this is a strong point in favor of propagator architectures. Furthermore, as I present in
Chapter 5, it is possible and bene�cial to enforce intermediate-level interpretable semantics in
neural network architectures.

Emergent behaviors from complex propagator systems with local correctness guarantees point
to a way that the systems can achieve �exibility, that stands out as unique among the mechanisms
considered. Eager propagation of locally-de�ned relations can lead to a propagator network �nd-
ing unanticipated solutions to computational problems, instantiated as patterns of information
�ow in the propagator network. The unanticipated solutions are subject to correctness guaran-
tees imposed by the well-behaved local interaction of components. The system can therefore
exhibit �exibility by �nding new ways to apply its components to solve a problem not speci�-
cally anticipated in the design. Propagator systems opportunistically �ll gaps in local descriptions
whenever the information needed to �ll the gaps exists somewhere in the network, and at least
one propagation path exists between the gap and the source information needed to �ll it. Flexi-
bility arises when the normative behavior of a system is interrupted by such a gap, but the gap
is �lled by opportunistic propagation.

As a concrete example of �exibility arising from opportunistic gap �lling, suppose a sys-
tem is designed to use stereopsis to infer depth, and then use the resulting depth measurements
combined with the image to detect objects and estimate their 3D location. A gap in this compu-

15



Mechanisms of alignment

tational path is formed when one image sensor is occluded, so that stereopsis fails. If an object
with a narrow range of possible sizes, such as a human, is present and strongly detected based on
appearance alone, then a suitable propagation-enabled object-detector could estimate the depth
measurements in the vicinity of the object. The 3D-location propagator can then make progress
on estimating the human’s position, even though its usual source of depth information is unavail-
able. Implementing such �exibility constitutes an essential step toward modeling natural vision’s
ability to adapt quickly and with few examples to novel tasks.

One challenge in applying propagator architectures to vision is in preserving their many
desirable attributes while scaling them to typical vision problems, with easily billions of sensor
measurements and pervasive uncertainty. My work on this problem is the subject of Chapter 4.

1.2.2 Probabilistic graphical models

Probabilistic graphical models are another class of mechanisms that has seen widespread use in
vision problems. Probabilistic graphical models are not a speci�c mechanism, but rather a class of
abstractions that augment concrete computational mechanisms. Abstractions in the class provide
structured ways to reason about the uncertainty of variables within the mechanisms that they
augment. Such abstractions, which include Bayes Networks, Markov random �elds (MRFs), and
many others, use vertices in graphs to represent random variables, and edges to encode structure
of conditional dependence, so that the resulting graphs represent families of probability distribu-
tions de�ned by common factorization structure. The abstractions and their associated exact and
approximate inference and learning algorithms have found widespread application in computer
vision. Probabilistic graphical models have appeal from the perspective of the alignment hypoth-
esis because of the way the underlying graph-structure captures locality through distribution of
state. Distributed state makes these models amenable to approximate inference via relaxation
algorithms.

Graphical models have been successfully applied in multitask and multimodal alignment
problems. Many examples of prior art exist but I call attention to work which demonstrated
that a generalization of the Viterbi algorithm (Viterbi [1971]) applied to a uni�ed hidden Markov
model (HMM) representation for object detection, tracking, and event recognition can exceed the
performance of the components in isolation (Barbu et al. [2012]). Further work showed a very
similar approach applied to multimodal search problems in vision and natural language (Barrett
et al. [2016]). Such successes in multitask and multimodal perception using graphical models
bene�t from pioneering work in grounding language in perception (Siskind [1995]) and event
recognition (Siskind and Morris [1996]).

By design, probabilistic graphical models are skin-deep representations: their homogene-
ity enables the same suite of algorithms to apply to many problem domains, but limits repre-
sentational power over any particular problem. Typically, representational power is limited to
statistically-measured conditional dependence among the variables that make up the inner work-
ings of instantiated representations. Statistical methods tend to require a lot of data to describe,
even super�cially, the detailed causal relationships which are nevertheless easy to describe in the
right representations. Seen from this perspective, probabilistic graphical models unsurprisingly
perform best when grounded in carefully designed representations resulting from keen insights,
such as those by Siskind et al., into the problem’s domain1. For this reason, in my work I focus

1This appraisal of graphical models’ limitations applies to the classical machine learning framework. Feature

16



Mechanisms of alignment

more on representation design and less on graphical models, guided by the principle that graph-
ical models can augment good representations, but applying them too early can compensate for
and obscure the �aws in bad representations.

1.2.3 Restricted Boltzmann machines

An RBM is a type of stochastic, recurrent neural network (Hinton et al. [2006]). In an RBM, a
set of visible units and a set of hidden units form a bipartite graph with weighted edges. As in
conventional neural networks, a node i accumulates weighted activation ai =

∑
j wijxj from

its neighbors j. The nonlinear function in an RBM node must produce a valid probability. This
probability is de�ned as pi ≡ σ(ai + bi), where σ(x) ≡ 1/(1 + exp(−x)) is the sigmoid function
and bi is the bias for node i. Each node i outputs 1 with probability pi, or 0 with probability 1−pi.
Unlike conventional neural networks, RBMs have undirected edges. When an input (assumed for
simplicity of explanation to be a binary vector) is presented to the network on the visible nodes,
the hidden nodes are updated according to the update rule. The values of the hidden nodes can
likewise be used to update the visible nodes. Iterating hidden and visible updates forms the basis
of the contrastive divergence training algorithm (Hinton [2002]), a method of updating weights
using very few rounds of Gibbs sampling. The contrastive divergence method is e�cient and
works in practice despite having few theoretical guarantees (Hinton [2010]).

RBMs have several properties that make them good candidates for alignment mechanisms.
The distributed state, and relaxation learning and inference algorithms of RBMs �t the pro�le
of mechanism attributes that I identi�ed in Section 1.1. Furthermore, RBMs—and closely related
deep RBMs and deep belief networks—have shown great promise in multimodal learning. Hinton
et al. predicted that certain multimodal architectures based on RBMs or deep belief networks
could result in improved high-level features (Hinton et al. [2006]). In particular, the authors
described an architecture in which sensory modalities are processed by deep RBMs or deep belief
networks that share an undirected associative memory at the top layers. In practice, instances
of such architectures e�ectively learn generative models of word associations with images that
can be used for classi�cation and retrieval (Srivastava and Salakhutdinov [2012]) and multimodal
classi�cation on audio and video where an unsupervised model trained on both modes and �ne-
tuned on one mode is able to classify using the alternate mode (Ngiam et al. [2011]).

The opacity of RBMs and conventional neural networks makes designing and debugging sys-
tems with these representations di�cult. Whereas conventional neural networks have matured
as a technology, spurred on by powerful and freely available engineering tools such as Tensor-
Flow (Abadi et al. [2015]), development with RBMs remains relatively obscure at the time of this
writing. Due to their scalability potential, RBMs may eventually come back into fashion, causing
a similar excitement leading to proliferation of tools to that which has accompanied the growth of
deep learning with conventional neural networks. In that future, RBMs would be worth revisiting
as potential alignment mechanisms.

1.2.4 Neural networks

Conventional neural networks, particularly feed-forward deep convolutional neural networks
(DCNNs), appear at �rst glance to have fewer desirable attributes for testing the alignment hy-

learning frameworks are a more complicated subject, explored in Chapter 2.

17



Testing ground

pothesis than RBMs, propagator networks, or probabilistic graphical models have. During infer-
ence with DCNNs, information �ows unidirectionally through a staged directed acyclic graph
(DAG) rather than bidirectionally and asynchronously. Stochastic gradient descent combined
with backpropagation, which is by far the most successful and widely used learning strategy,
generally requires global sequencing of operations and is therefore not conducive to solution
via relaxation algorithms. Despite these apparent incompatibilities, neural networks are �exible
and adaptable enough to implement alignment architectures. Surprisingly, such adaptations of
neural networks lead to performance on par with the state of the art on tasks such as depth re-
construction from RGB images, and to networks that are able to solve new problems as a result
of having internal signals with meaningful and interpretable semantics. My work on extending
neural network architectures is the subject of Chapter 5.

1.3 Testing ground
“You can’t think about thinking without thinking about thinking about something.”
– Seymour Papert

Discovering good computational models of a problem-solving ability requires �rst �nding good
problems to solve. Experience has shown that toy problems, where low-level perceptual tasks
are oversimpli�ed, simulated, or hand-annotated, do not generalize to real-world visual tasks.
The greatest successes of computer vision to date have been on tasks with real-world perceptual
inputs, but with a limited range of outputs, such as object labels and bounding boxes, event
labels with spatial and temporal extents, or semantic segmentation with a limited number of
categories. Although solutions to such problems have clear economic value, the way the problems
are framed prevents the solutions from addressing the questions that motivate my work: how can
we model natural vision’s versatility, �exibility, and introspective capabilities, and how can we
build systems with those abilities? To take steps toward answering these questions, I consider
several possible testing-ground problems and point out a hazard associated with choosing the
wrong testing-ground problems and performance metrics.

1.3.1 Problems not to use, and why

The problem of image captioning, de�ned as emitting a textual description of an image’s content,
appears at �rst to be a di�cult problem for which a solution would necessarily demonstrate
nuanced visual understanding. Sensational results in this problem area have been covered with
some astonishment by mainstream media (Marko� [2014], Dent [2016]) because the depth of
thought processes that humans must engage in to produce such descriptions tempts us to believe
that the systems likewise deeply understand the images that they generate captions for. The
occasional but nonsensical failures of captioning systems reveal how the captioning problem does
not adequately constrain systems to develop robust visual intelligence. Nonsensical failures on
clearly human-interpretable images rule out that captioning systems possess human-level image
interpretive capability, indicating that the success of these systems on the majority of their inputs
stems from the overwhelming statistical regularity of human-generated captions appearing in the
training data. Mapping images to plausible captions based on training with many pairs of images
and human-generated captions is thus signi�cantly easier than understanding images, because

18



Testing ground

most of the image understanding process is contained in the annotators of the training data. Such
illusory visual intelligence, in which the illusion is revealed only by striking counterexamples,
makes image captioning problematic as a testing ground for models of robust vision.

One way to address problems with captioning is to impose constraints on the types of out-
puts that a system may produce by having the system answer speci�c questions. Visual question
answering (VQA) (Antol et al. [2015]) provides such a way to direct a system’s attention toward
a speci�c task in order to evaluate the system’s visual intelligence. Antol et al. de�ne VQA in
terms of a benchmark so that performance can be measured programmatically. The benchmark
de�nition of VQA is convenient for quantitative evaluation but invites the temptation to model vi-
sual intelligence via processes that exploit statistical bias in the dataset of question-image-answer
triples in order to map question-image pairs onto plausible answers. Learning VQA by exploit-
ing such bias risks incurring the same hazard that plagues image captioning systems: frequent
good performance on problems that appear cognitively challenging can create a false sense that
systems model our cognitive abilities, whereas even a single unambiguously wrong output suf-
�ces to demonstrate that they do not. Furthermore, it is di�cult to obtain actionable information
about how to debug and improve systems from the occasional nonsensical outputs of statistically
learned models.

Illusory cognitive modeling resulting from over-reliance on statistical learning creates a haz-
ard in problems like VQA and image captioning, and draws emphasis to a subtle but important
consideration in selecting the problems and evaluation methods for development of models of
visual intelligence. Successful deep-learning models with very large capacity show excellent
measured generalization performance on test sets. Such models are demonstrably capable of
severely over�tting certain pathological datasets (Zhang et al. [2016a]) with an overwhelming
e�ciency that suggests that some amount of memorization of training data is a reality of all deep
learning systems. The �ndings of Zhang et al. suggest that strong precautions must be taken to
prevent such memorization from having negative consequences, that remain completely hidden
by current best practices in measuring generalization performance.

Precautions against over�tting cannot protect against the consequences of buggy data in
which a bias a�ects the test data and training data alike, nor can the precautions protect against
implicit bias arising from the speci�cs of the training problem. As I present in Chapter 2, implicit
bias towards brittle or incomplete cognitive models, baked into the problems we ask deep learn-
ing systems to solve, can manifest even in straightforward image classi�cation tasks. In many
but not all commercial applications of machine learning, the training tasks are identical to the
task of commercial interest, the training data are vast and cover all plausible operating scenar-
ios, and occasional failures do not put life or liberty at risk. When the training data sparsely
cover the operating domain, or when the training task oversimpli�es or embeds bias about the
real-world problem, attempting to mirror the input-output characteristics of high-level cognitive
abilities via statistical training becomes inaccurate. Making matters worse, such inaccurate mod-
eling becomes morally reprehensible in zero-tolerance applications in which creating the illusion
of intelligence could convince a reasonable person to trust the system as though its abilities were
genuine. Although the moral argument is outside the scope of my thesis, it has never been outside
the purview of AI engineers’ responsibilities.

Practical considerations about at what level statistical modeling is appropriate bear heavily
on my work, as do choices about problem framing that support development of models of human
intelligence rather than convincing but fundamentally-�awed mimicry of the products of human

19



Testing ground

intelligence. Even in cases where such mimicry succeeds due to overwhelming availability of
training data, it leads to intellectually unsatisfying models. Had physicists adopted the dismal
worldview that nature had no more to o�er, by way of insight, than statistics dutifully recorded
in vast quantity from experiments, they may still have produced large and impenetrable models
capable of predicting the motion of objects in the world as well as the elegant laws of classical
mechanics do. They might have said, “Nature is obviously a vast complicated system. We have no
reason to expect simple explanations for its workings.” The only way to reveal such a statement as a
failure of imagination is to �nd just one better model, for example, F = ma. Scienti�c endeavor
to understand human intelligence likewise thrives on perseverance to �nd simple and elegant
models, and optimism that such models exist to be found.

1.3.2 Problems to use, and why

To avoid con�ating models of statistical regularity in input data with models of the cognitive pro-
cesses that produce such data, I re-framed VQA as a Turing Test analogue for visual intelligence,
in which a human engages the system in an interactive question and answer session to expose
gaps in a system’s visual intelligence. Framing VQA as an interactive test makes quantitative per-
formance metrics di�cult to develop, but this di�culty is of little detriment to the endeavor of
discovering models of vision’s computational processes, in which a premature focus on optimiz-
ing a numerical measure of performance would curtail a thorough exploration of possibilities. I
did not model the language aspect of VQA; rather, I sought representations that can empower nat-
ural language systems such as Genesis (Winston [2014]) to answer questions about visual scenes.
I focused on modeling the introspective capability of natural vision by designing representations
that provide question answering systems with the ability to provide support and explanations
for their answers. I developed and qualitatively evaluated such representations in the context
of grounding scene geometry in observation of human movements, using a framework inspired
by Sussman’s propagator architecture to establish bounds on estimates and to track support of
knowledge in the system. Given a video recorded from a �xed vantage point in an outdoor urban
environment, the system supplies information about objects and their 3D location and movement,
as well as background occluders in the scene. This work, which is the subject of Chapter 4, is
a step toward perception systems that will empower action recognition in story understanding
systems.

My work on using propagators to bootstrap understanding of scene geometry made use of
coarse-grained primitives such as background subtractors. This implementation was a �rst step
toward evaluating the alignment hypothesis in a real-world scenario. The next step was to take
the implementation further toward pervasive alignment, in which information propagates from
scene-level reasoning all the way through to the low-level descriptions used internally by the
components themselves. The coarse-grained components that I used in the initial implementa-
tion that I describe in Chapter 4 are not designed to have this capability, so I sought to design
mechanisms that have such alignment capabilities. The development e�ort led me to deep neu-
ral networks, whose success in object detection and generative modeling of images continues to
overwhelm that of other mechanisms. In order for neural networks to align information from
external sources with their internal descriptions, the networks need to share common represen-
tations across their interfaces with other components. In Chapter 5 I describe my implementation
of such networks, applied to the problem of reconstructing distance from focal plane (depth) from

20



Overview

single monocular RGB images. I chose the depth reconstruction problem as a testing ground for
such low-level alignment because it is complex enough to be interesting while remaining feasi-
ble under the constraints of computational complexity and data availability that present major
challenges in deep learning. In addition, the depth reconstruction problem has clear applications
to higher-level scene understanding. A surprising result from my work on depth reconstruction
using networks trained to learn representations with interpretable semantics is that these net-
works perform on par with state of the art depth reconstruction systems for cluttered indoor
scenes. Another surprising result is that the networks have the ability to dynamically respond to
external signals that simulate multi-modal in�uence, in order to reduce the severity of errors.

1.4 Overview
I have motivated my work in terms of what sets natural visual abilities apart from the abili-
ties of the best performing computer vision systems today. I asked how we can capture nat-
ural vision’s ability to perform robustly under widely varying conditions, its ability to adapt
quickly and with little training to new tasks, and, especially, its ability to provide us with rich
compositional explanations of its �ndings. I made four observations that pertain to the envi-
ronment’s in�uences on vision systems: vision is fundamentally uninvertible, vision is just one
component of a multimodal perceptual system, the natural world is rich with constraints and
regularities, and vision evolved to serve survival goals. These observations led to a hypothesis
about the high-level computational organization of natural vision that enables its unique abilities.
This alignment hypothesis, in which I anticipate that robust perception requires pervasive
alignment of partial information throughout a multimodal network, then informed algo-
rithmic and mechanistic choices in designing vision systems. In particular, the hypothesis draws
attention to relaxation algorithms, and indicates that propagator networks and certain types of
neural networks are good mechanism choices.

In order to gather evidence in favor of the alignment hypothesis, I built systems upon the
computational foundations circumscribed by the alignment hypothesis, seeking to validate that
the systems possess the desired robust attributes. I identi�ed two problems related to recon-
structing scene geometry from images to use as testing grounds for implementations. The �rst
is the problem of reconstructing scene geometry, determining locations of occluders and a�or-
dances such as benches, and 3D location and orientation of surfaces in crowded urban scenes.
The second is estimating depth maps from single monocular images of cluttered indoor scenes.
I identi�ed a hazard by which certain approaches, which are common in the machine-learning
discipline, encourage modeling of super�cial statistics of datasets that can create the illusion of
visual intelligence, but that embed biases that cause brittleness. I took care to avoid this hazard
in my own work.

In Chapter 2 I investigate a type of neural network performance anomaly that relates brittle-
ness and task-embedded bias as I discussed in Section 1.3. Chapter 3 is an overview of propaga-
tion, relating several prominent historical uses of visual propagation to my own work. Chapter
4 details my e�orts to build a visual propagator system that can make inferences about the ge-
ometry of a scene that it monitors continuously with a stationary camera. In Chapter 5 I present
my work on a related problem, estimating depth from images, that draws on �ndings of the ex-
periment described in Chapter 2 and the outcomes of the work I describe in Chapter 4. In the
appendix I present some useful techniques I developed in the course of my work with neural

21



Overview

networks. I summarize my contributions in Chapter 6.

22



2. Characterizing Neural Net Classi�cation

2 Characterizing Neural Net Classi�cation
In this chapter you learn about several experiments I performed to investigate and characterize
neural network classi�cation. The results of the experiments point to representational shortcom-
ings of neural networks that I alluded to in Section 1.3.1, and motivate development of alignment-
based methods to overcome the shortcomings.

The experiments in this chapter use a technique I developed to remove from natural images
all but the features most essential to their classi�cation by neural networks. The technique works
by reducing image signal energy without reducing neural network classi�cation con�dence. Ex-
amples of the inputs and outputs of this technique are shown in Figure 3. A surprising result
presented in in this chapter is that the recognizability by humans of the reduced-energy images
depends on the class of object in the image more than it depends on other image properties.

(a) Input natural images (b) Output reduced-energy images

Figure 3: Reduced-energy images that a neural network recognizes
A neural network classi�ed the natural images in (a) with high con�dence as meerkat, Russian wolfhound,
marimba, remote control, guinea pig. The images were processed by an algorithm that removed as much
signal energy as possible while preserving the original classi�cation con�dence reported by the neural
network. The results, shown in (b), exhibit varying degrees of recognizability to human observers.

23



Introduction

2.1 Introduction
My work toward achieving robust vision models by pursuing the alignment hypothesis of Chapter
1 has focused on two mechanisms: propagator networks and neural networks. Propagator net-
works, the subject of Chapters 3 and 4, achieve robustness through complex emergent properties
of many simple local interactions that adhere to a principled design. The rules of local interaction
impart their explanatory power on emergent behaviors of the system as a whole. Neural net-
works, by contrast, enforce constraints in terms of loss functions evaluating a complex behavior
to be learned, but do little to constrain how the behavior is implemented by the individual com-
ponents of the network. Experiments have shown that this leads to a di�erent and unprecedented
type of robustness: the ability to extract, from large collections of data, hierarchical patterns that
are empirically more descriptive than previous carefully-engineered representations. In Chapter
1 I alluded to a �aw in the apparent panacea of neural networks: the conspicuously nonsensical
failures that plague these systems. In this chapter I present an investigation of that �aw, and its
implications on future work in building robust systems with neural networks.

Despite their unprecedented success in, for example, classi�cation tasks, deep convolutional
neural nets (DCNNs) exhibit several related �awed behaviors that collectively demonstrate brit-
tleness. A subcategory of such brittle phenomena is fooling by adversarial examples: a process by
which an adversary generates examples constructed speci�cally to fool a neural network. The
adversary can fool the DCNN into con�dently misclassifying images that bear no resemblance to
the reported category or to any natural image, as demonstrated by Nguyen et al. [2015], or into
con�dently misclassifying images after an imperceptible signal has been added to an original,
correctly-classi�ed image, as demonstrated by Szegedy et al. [2013].

Adversarial examples point to a serious �aw in current high-performing DCNN models, in
that their capacity to fool DCNNs proves de�nitively that DCNNs do not yet exhibit robust visual
intelligence. Mounting evidence suggests that adversarial fooling is a problem with widespread
implications: Moosavi-Dezfooli et al. [2016] found a method of constructing perceptually-irrelevant
perturbations that cause misclassi�cation when added to nearly any image. Their method gen-
eralizes across neural networks. Koh and Liang [2017] extended the �nding to training examples:
even single adversarial training examples within a large corpus can cause the resulting trained
classi�er to fail on speci�c unmodi�ed test images. In Section 1.3 I argue that given the bias of
statistical learning systems toward sophisticated but �awed mimicry of intelligent systems’ out-
puts, even isolated unintelligible failures rule out the possibility that such learned systems are
robustly intelligent. It would be convenient to be able to dismiss adversarial fooling as a quirk
that negligibly impacts real-world performance. To dismiss such profound contradictions of ro-
bust visual intelligence responsibly, it is crucial to understand adversarial fooling well enough to
rule out the possibility that it is not merely an indicator of a larger class of brittle phenomena.

In this chapter, I present experiments to shed light on potential underlying causes of fooling
by exposing what visual features in natural images are most essential to image classi�cation
by neural networks. I believe that the problem of interest is not that neural networks can be
adversarially fooled. The problem is that we do not understand why in a way that yields insight.
Extensive work has been done to characterize several types of fooling phenomena, including
many su�cient conditions to cause fooling (Nguyen et al. [2015], Szegedy et al. [2013]). The
putative cause of certain fooling phenomena is the compounding e�ects of linear units in deep
nets, combined with the counter-intuitive fact that in high-dimensional spaces, vectors may have

24



Introduction

large magnitude yet have only very small components parallel to the individual vectors in a given
basis (Goodfellow et al. [2014b]). This leads to imperceptible perturbations in image space having
large e�ects on classi�cation performance. This low-level account of neural network fooling
leads to generalizations about fooling techniques, but it does not shed light on how the emergent
behavior of neural network mechanisms gives rise to the fooling phenomenon, and it does not
provide a clear set of strategies to build and train networks that cannot be fooled.

Humans can be adversarially fooled too, but we know that optical illusions really do represent
quirks that negligibly impact real-world performance. On the contrary, the nature of such quirks
helps shed light on how vision works. In many cases, the human vision system contextualizes
illusions and creates descriptions of them with the same rich, compositional detail that it uses
when describing non-illusions. In the case of the illusions, the compositional explanations can
even yield self-re�ective insight into how we process images. The illusion of a foreground shape
in Figure 4 inspires a striking example of this self-re�ection process.

Figure 4: The Kanizsa Triangle illusion
Adversarial examples for human visual systems point out positive attributes, rather than bugs, of visual
intelligence.

Rather than focus directly on fooling in my own experiments by asking, as others have asked,
what conditions and mechanisms cause con�dent misclassi�cation of certain images by neural nets?,
I ask instead what are the essential features of natural images that result in their con�dent classi�-
cation by neural nets, and how do those features di�er from the features that are essential to classi�-
cation by humans? In this way, I approach the fooling phenomena with the opposite perspective
from that of prior work on the subject. I implement this approach by reducing natural images to
their essential features necessary to maintain neural network classi�cation performance, thereby

25



Methods

exploring a smaller—though still very large—space of potential fooling images than would be ex-
plored with a less constrained image-generation technique. Critical questions to address in my
approach are do minimal sets of features that support strong classi�cation by neural networks also
su�ce to support strong classi�cation by humans? If not, how can we account for the di�erences?

I approached the problem of generating minimal feature sets that are recognized by deep neu-
ral nets with high con�dence by using a greedy algorithm to adversarially remove signal energy
from images. Speci�cally, the algorithm generated minimum-energy images through a process
that starts with correctly-classi�ed images and then minimizes signal energy in a way that does
not reduce classi�cation con�dence. The results of the process are images for which any fur-
ther application of my signal-energy reduction algorithm would result in a drop in classi�cation
con�dence. Observations of such images, exempli�ed in Figure 5, shed light on the features of
natural images that are most crucial to classi�cation by DCNNs.

2.2 Methods
2.2.1 Network models and images

In order to obtain reduced-signal images that are detected with high con�dence by high-performing
DCNNs, I used the pre-trained AlexNet model (Krizhevsky et al. [2012]) provided by the Ca�e
software package (Jia et al. [2014]). This model was trained on a subset of the ImageNet dataset
(Deng et al. [2009]), and though its performance lags behind the current state of the art, modern
architectures su�er just as profoundly from adversarial fooling (Moosavi-Dezfooli et al. [2016])
and the small size and low latency of AlexNet made it convenient to work with. I selected im-
ages directly from ImageNet that were not contained in the training data of the 2012 ILSVRC, as
speci�ed by Russakovsky et al. [2015b], and used the images as the source material from which
to generate reduced signal images via my randomized algorithm, which I describe in detail in the
next section. The image selection script ensures detection con�dence of 98% or higher on the
source images.

2.2.2 signal-energy reduction algorithm

I used a randomized algorithm to remove much of the signal energy from natural images while
preserving high classi�cation con�dence by the DCNN. The �rst step in the procedure is to divide
the source image into its Laplacian pyramid. The algorithm then performs a search through
candidate images, where each candidate is generated by randomly selecting a level from the
Laplacian pyramid, excluding the image-mean level, and then randomly selecting a rectangular
region within that pyramid level and setting all pixels within that region to zero. The candidates
are evaluated by reconstructing an image from the modi�ed Laplacian pyramid and using the
DCNN to evaluate a label and con�dence for that image. The algorithm rejects all candidate
image modi�cations that have con�dence below that of the original image or that have assigned
labels di�erent from that of the original image. The type of search used is a randomized beam
search, in which a population of the most �t modi�ed Laplacian pyramids is retained, and at
each step a member of that population is randomly selected to undergo further modi�cation. The
�tness function f(I) used by the search to evaluate the �tness of an image I that is not ruled out
due to low con�dence is proportional to negative signal energy of the mean-subtracted image,

26



Methods

banana cheetah mousetrap freight car

king penguin hare paintbrush submarine

Figure 5: Example reduced-signal-energy images
Pairs of original images (top) with corresponding reduced-signal-energy images (bottom). All images are
detected by the DCNN as the reported category with con�dence 98% or higher and the reduced-signal-
energy images are detected with the same con�dence as the original images from which they were gener-
ated.

27



Methods

and is de�ned in Equation 1, where x and y are pixel coordinates and µ is the image’s average
pixel color:

f(I) = −
∑
x,y

(I(x, y)− µ)2 (1)

I use a Laplacian pyramid to represent the image during modi�cation because the Laplacian
pyramid conveniently facilitates removal of signal energy selectively from each of the pyramid’s
frequency bands. I opted to selectively remove energy from Laplacian pyramid levels in order to
gain insight into the frequency distribution, in addition to the spatial distribution, of the most
important features used by DCNNs to classify natural images. Figure 6 illustrates the signal-
energy reduction algorithm’s inputs and outputs on an example Laplacian pyramid.

2.2.3 Reduction algorithm design issues

In my work on extending the results of Nguyen et al. by generating high con�dence fooling im-
ages via a large collection of di�erent methods, I found that it is easy to devise random algorithms
that can be used in combination with greedy search to generate fooling images for a DCNN. In
fact, it is challenging to �nd image transformations that do not result in fooling images when
combined with the right kind of search. Nguyen et al. showed that it is possible to create fooling
images for DCNNs by directly manipulating image pixels one at a time in the HSV color space
starting from a random initialization, and by manipulating compositional pattern-producing net-
works (CPPNs) that serve as encodings of images. I explored the fooling phenomenon further
and found many more successful techniques. Some examples are depicted in Figure 7.

A goal in my experiments was to expose the features in natural images that DCNNs rely on
most crucially for classi�cation. To achieve that goal, I needed to prevent the e�ect of the signal-
reduction algorithm creating new features in the image by accident. The result in Figure 7d shows
that without additional constraints on the transformations used to selectively delete information
in the Laplacian-pyramid levels, it is possible for those transformations to cause DCNN fooling.
The results shown in Figure 7 indicate that DCNN fooling is easy to do, suggesting that care
must be taken that the signal-energy reduction algorithm creates minimal images by eliminating
all but essential features, rather than by creating new, incidental features. I mitigated the e�ect
of such incidental feature creation by placing constraints on the erasure window size. When
the procedure that was used to generate Figure 7d was additionally required to exhaustively
search possible deletion rectangles of larger relative dimensions �rst before being permitted to
progress to searching for smaller erasure rectangles, I found that it was no longer able to generate
fooling images such as the one in Figure 7d. In practice exhaustive search is infeasible, so I
required the algorithm to produce a number of unsuccessful candidate images via deletions of
a certain range of window sizes before irreversibly moving to the next smallest window-size
range. Combining the e�ect of such a monotonically-decreasing deletion window with a �tness
function that does not reward increases in detection con�dence beyond that of the starting image
further reduces the e�ect of accidental DCNN fooling. The �tness function used in the signal-
energy reduction algorithm does not reward changes in con�dence; instead, it rewards decrease
in signal energy and requires that con�dence remain above a threshold set by the original image’s
detection con�dence.

28



Methods

(a) Starting Image

(b) Starting Laplacian Pyramid

(c) Final Laplacian Pyramid

(d) Final Image

Figure 6: Signal-energy reduction steps

The signal-energy reduction algorithm starts with an image (a) and computes its Laplacian pyramid, a loss-
less representation of the input image comprised of 7 layers that act as band-pass �lters for image signal
energy, and a residual 4-pixel image containing the mean of each quadrant of the image. The frequency-
selective layers of the Laplacian pyramid corresponding to the starting image are shown in (b), with visual
enhancements to show contrast. The signal-energy reduction algorithm produces a �nal Laplacian pyra-
mid, shown in (c). The composite image reconstructed from the �nal Laplacian pyramid is shown in (d).

29



Results

(a) (b) (c) (d)

Figure 7: Adversarial examples generated by 3 methods
A source image (a) was used to produce three fooling images (b) - (d) that are labeled ostrich with 99%
con�dence by DCNN. Each fooling image was generated by applying a randomized beam search to maxi-
mize classi�cation con�dence on the label ostrich, applying one of 3 image transformations at each search
step. In image (b) the image transformation was to randomly transpose a horizontally- or vertically-�ipped
region of (a) to another part of the image while applying partial transparency to the transposed region. In
image (c) the image transformation was to start from a uniform black image and randomly select rectangles
to �ll with a randomly selected color from the color palette of (a). Image (d) was generated by applying the
transformations used in the signal-energy reduction algorithm to (a) without any guards against acciden-
tal DCNN fooling, and maximizing con�dence in the label ostrich rather than using the �tness function
de�ned in Equation 1.

2.3 Results
I ran the signal-energy reduction algorithm on 142 images from ImageNet, each of which had a
detection con�dence via the reference AlexNet DCNN of 98% or greater. Plotting the ratios of
�nal to initial signal energy in each Laplacian pyramid level shows that, on average, less than 10%
of the signal energy contained in each of the top 5 Laplacian pyramid levels contributes to the
con�dent detection of the image label. I note that the reduction algorithm has a bias to preserve
more energy in the higher pyramid levels, because these levels have lower resolution and so it is
impossible to delete rectangular regions smaller than a certain fraction of the linear dimension of
these pyramid levels, because such regions would be less than one pixel wide along one or more
dimensions. Ignoring the upward trend in signal energy ratio starting at level 3 of the pyramids
which may be attributed to algorithmic bias, it appears the DCNN may be slightly more sensitive
to signal energy in the higher frequency ranges, but the e�ect is not pronounced (Figure 8).

The signal-energy reduction algorithm described in Section 2.2.2 provides no guarantee that
the result is unique. Many local minima are likely to exist in the landscape de�ned by Equation
(1) under the constraint that detection con�dence remains above a given threshold. It is therefore
surprising that the algorithm consistently produces visually similar results on multiple indepen-
dent runs on the same input image, with di�erent random initializations. Figure 9 illustrates the
similarity that is typical among results of independent runs of the algorithm on one image.

By applying the reduction algorithm iteratively it is possible to identify a nearly complete
set of features that the DCNN relies on for detection. The algorithm is run on the source image
to produce a Laplacian pyramid representation of the reduced-energy image. That Laplacian
pyramid is subtracted from the pyramid representing the input image, resulting in a residual
image that is missing all of the high-con�dence features found by one run of the signal-energy
reduction algorithm. The process is repeated on the residual images, using the new detection

30



Results

0 1 2 3 4 5 6
Laplacian pyramid level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
f
/E

0

Figure 8: Energy ratios per Laplacian-pyramid level

Mean �nal/initial energy ratios per Laplacian pyramid level, based on 142 sample images from the ILSVRC
2012 validation data that were detected by the reference DCNN with 98% con�dence or higher.

con�dences, until a marked drop in con�dence occurs. Figure 10 illustrates this process on an
example image, and Figure 11 illustrates the composite image created by accumulating all of the
features isolated by the signal-energy reduction algorithm in each iteration. By construction, the
features isolated in this way are non-overlapping in their Laplacian pyramids, so the last image
in the series in Figure 11 is the complement of the last image in the upper series in Figure 10 and
adding their Laplacian pyramids produces the Laplacian pyramid of the original image.

An interesting observation about the reduced-energy images is that some are immediately
recognizable as modi�ed versions of the image class of the corresponding original images, while
others are not recognizable at all. Of even more interest, the recognizability of images seems to
generalize over images classes: the familiarity to a human observer of the results of signal-energy
reduction seems to be closely associated with the label of the starting image. This phenomenon
is illustrated in Figure 12. I conjecture that the DCNN uses qualitatively di�erent strategies to
detect object types that tend to be easily recognizable by humans from their reduced-energy
images, versus those that are not easily recognizable by humans from reduced-energy images.
The strategy used by the DCNN to detect objects that are easily recognized by humans from
their reduced-energy images is to detect the objects based on the presence of features according
to an appearance model that generalizes roughly to a human observer’s appearance model of the
object. The strategy used by the DCNN on objects that are unrecognizable by humans from their
reduced-energy images is a discriminative strategy, that �rst rules out certain high-level features
of the object and then applies a specialized mode of detection, that is sensitive to features that
are only useful for detection once other categories have been ruled out.

There are many ways that a strategy based on ruling out high-level features can be realized
in a DCNN. The DCNN could, for example, implement that strategy at the highest levels of the
network, by creating a structure that works analogously to lateral inhibition, e�ectively rejecting

31



Results

(a)

(b) (c) (d)

(e) (f) (g)

Figure 9: Invariance of signal-energy reduction algorithm to RNG initialization
Three runs of my algorithm with di�erent RNG initializations on the starting image of a green mamba in
(a) generated the three intermediate images in (b) - (d) and the corresponding �nal images in (e) - (g). The
intermediate images exhibit more visual variation due to the di�erent RNG initializations than the �nal
images.

32



Results

0 1 2 3 4 5 6 7 8
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
C
o
n
fi
d
e
n
ce

hare
hummingbird

Figure 10: Residual and minimal-energy images from iterative energy reduction
DCNN con�dence in two labels when signal-energy reduction is applied iteratively, where the input image
in the Kth iteration is the residual image constructed by subtracting the Laplacian pyramid of the min-
imal image of the K − 1st iteration from the input image of the K − 1st iteration. The lower series of
images shows the corresponding minimal images produced by the signal-energy reduction algorithm, i.e.,
a minimal set of features that the DCNN requires for classi�cation as a hare. The upper series of images
shows the residual images at each iteration, i.e., the parts whose presence was unneeded for the DCNN
to be con�dent the image was of a hare. By the 8th iteration the DCNN detects a hummingbird with 35%
con�dence and a hare with 13% con�dence. 33



Results

0 1 2 3 4 5 6 7 8
Iteration

0.988

0.990

0.992

0.994

0.996

Co
nf

id
en

ce

hare

Figure 11: Accumulated minimum-energy images

DCNN con�dence for a series of images corresponding to partial sums of the Laplacian pyramids of a series
of serially-extracted reduced-energy images, which are shown in Figure 10.

34



Results

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Class-speci�city of minimum-energy image recognizability
Images 12a - 12d and 12e - 12h are representative samples of minimum-energy images of accoustic guitars
and Russian wolfhounds, respectively. Each member of both sets of images is classi�ed by the DCNN with
98% con�dence or above, but the minimum-energy images of accoustic guitars are easily recognizable by
humans whereas the others are hardly recognizable as animals.

35



Results

a certain explanation for the image if a more reliable explanation is available. One of many ways
to represent such inhibition in a DCNN is before the �nal softmax layer, where each unit’s output
is proportional to the logarithm of the corresponding label’s probability. A unit in this layer with
a relatively high dynamic range can overwhelm units with relatively small dynamic range when
outputting a positive signal, permitting a discriminative strategy in which a specialized set of
features can be applied to detect a class, only when other classes have been ruled out.

I looked for evidence that a discriminative strategy realized by di�erences in dynamic range
in the pre-softmax units could partially account for the qualitative di�erence in recognizability
between image classes. To reduce the e�ect of my own biases when looking at the reduced-signal
images, I conducted a small pilot study with 5 participants, who were asked to identify objects
from the minimal images generated by my algorithm and assign a recognizability score to each
image. Participants were shown a sequence of web pages with reduced-energy images alongside
expandable trees that represented the position in the WordNet (Fellbaum [1998]) hierarchy of all
1000 ILSVRC categories. I asked the participants to guess the most speci�c descriptor that they
were con�dent described each image that they saw. Additionally, I asked participants to score
the image as unrecognizable, somewhat recognizable, or easily recognizable. Choosing unrec-
ognizable caused the category-selection controls to disappear. Because expanding the WordNet
tree to �nd a selected category would be unreasonably tedious for the subjects, the interface also
provided a substring-search function. Two screenshots of the experiment interface are depicted
in Figure 13.

36



Results

(a) Recognizable controls (b) Unrecognizable controls

Figure 13: Experiment user interface

The experiment’s user interface allowed subjects to search the WordNet hierarchy for phrases like dog (a)
and to reject an image as unrecognizable without making a choice (b). The tree shown in (a) is expandable
and collapsible by clicking on its boldface nodes.

To score the results of the pilot study, I considered only two categories: recognized and un-
recognized. Images were placed in the recognized category if an experimental subject rated it
either somewhat recognizable or easily recognizable, and their identi�cation of the object was
above the target label in the WordNet hierarchy, and within an edit distance of 4 from the target
label. For example, if the correct answer for an image was Russian wolfhound and the subject
answered dog and somewhat recognizable, then the image was considered recognized. I chose
the distance of 4 so that an answer such as bird, dog, or snake would correctly match a breed or
species, as I could not expect subjects to know the �ne-grained di�erences between dog breeds
or many animal species. If the subject answered unrecognizable or if the subject’s answer was
not hierarchically above, or not within an edit distance of 4 from the true label, then the image
was considered unrecognized. This methodology is generally a coarse, optimistic measure of rec-
ognizability. For example, a subject’s choice of instrumentality would correctly match the target
label bobsled under these rules. Therefore, participants were additionally asked to choose the
most speci�c category they believed to include the depicted object, and to refrain from choosing
certain general WordNet categories I judged to have little distinguishing semantic speci�city with
regard to image classi�cation, such as entity, artefact, instrumentality, or device.

From the results of the pilot study I identi�ed 7 object types that were recognized from their
minimal images by all subjects, and 7 object types that were not recognized by any subjects. I
collected 10 examples images of each object type that were detected with 98% con�dence or above

37



Discussion

lawn mower co�ee mug canoe street sign guinea pig acoustic
guitar

cello

banana mousetrap snowmobile submarine soap dispenser isopod Russian
wolfhound

Figure 14: Most-often and least-often recognized images by study participants
The most recognizable (top row) and least recognizable (bottom row) reduced-energy images as perceived
by the 5 subjects of a pilot study.

by the DCNN. Within this sample of 140 images, I measured the maximum and minimum pre-
softmax activation of the units corresponding to the 14 labels of interest. The resulting dynamic
ranges are shown in Figure 15. The overall di�erence in dynamic range between the recognized
and unrecognized categories provides evidence that the neural network uses a di�erent classi�-
cation strategy for each category.

2.4 Discussion
In this section I discuss what the results say about the descriptiveness of DCNN models. I inter-
pret the class speci�city of model descriptiveness in terms of a supposed high-level classi�cation
strategy in which the DCNN learns the 1000-way classi�cation game, but in a way that does not
support robust visual intelligence. I discuss implications that the results have for training and
applying neural nets, and the implications with respect to the alignment hypothesis of Chapter
1.

2.4.1 Descriptiveness of DCNN models

Nguyen et al. [2015] hypothesized that the counter-intuitive properties they observed, such as
the ease with which high-con�dence false positives can be generated, the variety observed in
such generated images, and the overwhelming unrecognizability of such images to human ob-
servers, may be due to the fact that the DCNN models they studied were discriminative rather
than generative models. Discriminative models partition the space of images and evaluate con-
�dence based on distance between a test image and the nearest classi�cation boundaries. Gen-
erative models rely on density models of the training data, so that a test image would have to
be closer to the training data to be misclassi�ed with high con�dence. Nguyen et al. predicted
that, were they to apply the same fooling strategy that was so successful against their target DC-
NNs to a generative model, high con�dence synthetic images would look more like the target

38



Discussion

la
w

n_
m

ow
er

co
ffe

e_
m

ug

ca
no

e

st
re

et
_s

ig
n

gu
in

ea
_p

ig

ac
ou

st
ic

_g
ui

ta
r

ce
llo

ba
na

na

m
ou

se
tr

ap

sn
ow

m
ob

ile

su
bm

ar
in

e

so
ap

_d
is

pe
ns

er

is
op

od

bo
rz

oi

25

30

35

40

45

lo
g(
A
m
a
x
)−
lo
g(
A
m
in
)

Dynamic range of pre-softmax outputs

recognizable
unrecognizable

Figure 15: Dynamic range of pre-softmax activation values
Dynamic range, log(Amax) − log(Amin), plotted relative to the sample mean in pre-softmax activation
of units within a sample of object types. 7 of the objects were universally recognizable from reduced-
energy images by pilot study participants, and 7 were universally unrecognizable. The sample mean is 35.3
and the sample standard deviation is 6.00. The di�erence in dynamic range between the recognized and
unrecognized categories provides evidence that the neural network uses a di�erent classi�cation strategy
for each category.

39



Discussion

class. Nguyen et al. identi�ed the application of their synthetic image generation methods to
generative models as a promising area of future work, because generative models lag behind dis-
criminative DCNNs in image-benchmark performance and there are few generative models that
scale to high-dimensional datasets of the complexity of ImageNet.

This work can be viewed as exploring a question related to the prediction of Nguyen et al.
that generative models would be harder to fool: to what extent do discriminative DCNNs contain
models of the categories they are trained to classify, that are even remotely similar to the models
humans use? Unlike other explorations of fooling DCNNs, I constrained my adversarial search for
high con�dence images by starting with natural images that were correctly classi�ed and remov-
ing signal energy from those images. I imposed constraints in the reduction algorithm to prevent
it from modifying an image of one class until that image is misclassi�ed with high con�dence by
the DCNN. The constraints do not, however, prevent extensive modi�cation of an image while
preserving high-con�dence classi�cation of the the modi�ed image. It is therefore reasonable to
suppose that my method restricts the modi�ed images to fall within a smaller neighborhood of
image space and remain closer, in some sense, to the correctly-classi�ed natural images than an
unconstrained image modi�cation method would. If the feature space used by DCNNs is simi-
lar to that used by our own visual systems, the small-neighborhood restriction should produce
visually-recognizable fooling images as Nguyen et al. [2015] predicted for generative models.

For certain classes of images, for example acoustic guitars, the modi�ed images do look strik-
ingly like the original class to a human observer. Other classes, for example Russian wolfhounds,
bear no resemblance at all to the original category. In the experiment depicted in Figures 10 and
11, I found that iterated application of the signal-energy reduction algorithm to isolate and remove
all high-con�dence features from a target image produced low-con�dence images that closely re-
semble the original class, and high con�dence images formed by compositing the reduced-signal
images that also closely resemble the target class. These results suggest that it is possible for DC-
NNs to learn models that are visually descriptive according to human intuition, but it is not clear
whether they do so for all objects. Additionally, it seems that DCNNs are often able to classify an
image based on a small subset of features that is not su�cient for humans to classify the image.

2.4.2 Class speci�city of model descriptiveness

The example depicted in Figure 12 suggests that the recognizability to human observers of the
reduced-energy images appears well correlated with the label of the original images, even when
the images themselves are visually very di�erent. This is surprising, as it suggests that the fac-
tors that lead to human-recognizable reduced-energy images are properties of the neural network,
not the images themselves. The fact that some entire classes of objects tend to produce recogniz-
able reduced-energy images and others tend to produce unrecognizable ones suggests that the
essential features for classifying images are, for some types of objects, similar to the features that
human visual systems depend on, and for other object types dissimilar.

This class-speci�c recognizability provides insight into a possible high-level strategy em-
ployed by the DCNN, in which classi�cation of some object classes is based on prior rejection
of other classes. In this strategy, the DCNN learns a strong descriptive model of some classes,
where I approximate descriptive strength based on similarity of the features it relies on to the
features that our own robust visual apparatus appears to rely on. Detection of other classes using
the putative strategy depends on �rst ruling out classes having such strong descriptive models

40



Discussion

within the network. The rules of the ILSVRC image classi�cation contest reward correct clas-
si�cation of an image that is known to contain one of 1000 object types. Robust classi�cation
of some object classes is advantageous to classi�cation of other object classes under these rules,
because, having ruled out one of the objects that is robustly detected, the DCNN can use a more
specialized set of features to distinguish between the remaining classes. Use of such specialized
features combined with a process of ruling out objects detected via more generally-applicable
features is qualitatively similar to cascades that Viola and Jones [2001] applied to face detection,
in that more specialized features are only considered if their applicability has not been ruled out
by the application of a more general set of features.

2.4.3 Ruling out alternatives: a DCNN strategy

I noted patterns in the pre-softmax activations of the DCNN that suggest that ruling out of alter-
natives plays a role in classi�caion. The softmax layer provides one easily-measured mechanism
by which the ruling-out strategy can be realized in the network. The softmax layer allows a
unit with a very strong activation to completely overwhelm weaker units when the strong unit
is active, yet not interfere with weaker units when it is inactive. Thus weaker units need only
overwhelm other weaker units in order to achieve strong classi�cation con�dence, and they may
be active when strong units are active without interfering with strong units. To put this in terms
of the results shown in Figures 14 and 15, if the image contains a cello, it would not matter if
the pre-softmax activation for banana is also relatively high compared to its average activation.
Because the cello output is so much louder than the banana output, the softmax layer will still
output high con�dence in cello. That means the banana detector is free to produce spurious de-
tections as long as a loud category is present; the spurious activity will not a�ect the classi�cation
very much.

If loud units correspond to classes detected via a visually-robust set of features, and quiet units
correspond to classes detected via brittle, specialized features, then the strategy naturally emerges
where robustly-detected classes are ruled out in order to facilitate high-con�dence detection of
contingent classes. The existence of trend like that depicted in Figure 15 toward louder activation
in classes which are more recognizable from their reduced-energy images is encouraging evidence
that ruling out plays a role in DCNN classi�cation.

Figure 11 illustrates a surprising observation about the features DCNNs use to classify images.
In the experiment in which I iteratively removed signal energy corresponding to the reduced-
energy image until a marked drop in classi�er con�dence occurred, it appears that the image
generated by accumulating all of the reduced signal energy resulting from each iteration was a
nearly complete reconstruction of the object of interest, in the case shown in Figure 11 a hare,
with nearly all of the background removed. Each iterative run of the signal-energy reduction
algorithm was forced to produce a distinct reduced-energy image, because the signal isolated by
the previous iteration was removed from the image. In the case of the hare in Figure 11, none
of the reduced-energy images is recognizable alone despite that they are very recognizable in
aggregate, suggesting that the DCNN is selective for a relevant set of features in images even
though it does not require all of them to classify with high con�dence.

41



Contributions

2.4.4 Implications

A training strategy in which the network is retrained on residual images like those in Figure
10 could be bene�cial in capturing more subtle features. Also of interest, a detection strategy
in which the minimal set of features responsible for a given high-con�dence detection are sup-
pressed and then the network is re-applied to the image could produce a more robust classi�er
if the detections are stable over several iterations. This kind of detection strategy is especially
interesting because it uses feedback to make sure that the classi�cation is supported by more than
one minimal set of image features. Although the signal-energy reduction algorithm I used in this
work is likely too computationally expensive for use in a real-time object detection, the principle
of using feedback to make sure objects are still recognizable as salient features are removed may
prove to be a powerful strategy to defeat adversarial fooling and brittle phenomena in general.

The results emphasize the need to choose good problems to use as testing grounds in visual
intelligence, as I argued in Section 1.3. The DCNN in these experiments appears to have learned
a kind of computational shortcut in which it rules out certain categories so that it can distinguish
among the others using more specialized features. The strategy works well in that it leads to good
test performance on the 1000-way classi�cation task. The reduced-energy images clearly show
that, for certain image classes, the model does not capture the type of compositional understand-
ing of the class that is required by robust visual intelligence. Placing additional constraints on a
network to force it to learn more relevant representations is a subject revisited in Chapter 5.

The alignment hypothesis anticipates that requiring the network to interpret the images in
the context of multimodal perception would place meaningful constraints on the image features
the network would learn. For example, if the decision to output dog were based on a multimodal
representation that included a depth map in addition to pixel colors, and this depth map had to
be estimated from the image if it was not given as an input, then I would expect that the reduced-
energy images would have to contain at least enough information to capture the aspects of the
object’s geometry that make it a dog. This experiment remains a goal of future work.

2.5 Contributions
My main contributions in this chapter are as follows.

• I developed a methodology for evaluating similarity between the features most crucial to
classi�cation via a DCNN, and the features used by our own visual system, in which I re-
move content from natural images without reducing classi�cation con�dence by the DCNN,
and evaluate the recognizability to humans of the resulting modi�ed images.

• I implemented an algorithm based on randomized search that reduces signal energy of
natural images to local minima, preserving DCNN classi�cation con�dence.

• Using the pre-trained AlexNet model of Krizhevsky et al. [2012] provided by the Ca�e soft-
ware package developed by Jia et al. [2014], I applied my algorithm to 142 high-con�dence
images.

• Through a pilot experiment with 5 participants, I identi�ed preliminary evidence of a pat-
tern in which certain entire classes of images, such as acoustic guitars, produce recognizable

42



Contributions

reduced-energy images via application of my algorithm, whereas other image classes such
as Russian wolfhounds produce unrecognizable reduced-energy images.

• I advanced a hypothesis to account for the class speci�city of recognizability of the modi-
�ed images by human observers. I hypothesize that the DCNN rules out robustly detected
classes before applying specialized features to detect the remaining classes. I found evi-
dence supporting my hypothesis though analysis of dynamic range in pre-softmax activa-
tions in the DCNN.

• Through iterative application of my signal-energy reduction algorithm, I produced an im-
age which is misclassi�ed yet retains the appearance of the original class. I predict that
applying the signal-energy reduction algorithm in such a way could yield useful synthetic
training data. Likewise, ensuring that classi�cation remains stable over several iterations
of signal-energy reduction may provide a route to strengthening robustness of classi�ers.

43



3. Foundational Work in Constraint Propagation

3 Foundational Work in Constraint Propagation
In this chapter you learn how my work with visual propagation di�ers from pioneering work
in related areas. I introduce distinctions between types of propagation, and make observations
about how propagation naturally arises in certain image-centric computations. I brie�y discuss
exploratory work that led to my work on propagators that is the subject of Chapter 4. In the
exploratory work, I extended the procedure of Waltz [1972] using a probabilistic graphical model.

3.1 Introduction
My work on implementing models of visual intelligence as processes that align sensory data with
expectation relies on the methodology of propagation, and speci�cally a propagation program-
ming methodology inspired by the work of Sussman and Radul [2009]. In this chapter, I make
some observations about a potential reason why propagation is a good strategy to apply to prob-
lems in vision, and make several distinctions that di�erentiate propagation methods. I review
notable examples of propagation applied to problems in vision and contrast the examples with
my own work with visual propagators. I then review aspects of Sussman and Radul’s propagator
architecture, which forms the inspirational groundwork for the propagation systems I use in my
own work, identifying the main similarities and di�erences between that groundwork and my
own contribution.

3.2 Observations about constraint propagation systems
A powerful idea that emerges in many successful computational models of vision processes is the
idea of embedding computations in a 2-dimensional image-like space. Analogous to the retino-
topic computations observed in natural vision systems, computations that operate on feature
maps that are 2-dimensional and homeomorphic with the original image are able to take ad-
vantage of the property of natural images that nearby observations are closely correlated. Hi-
erarchical, adjacency-preserving representations have prevailed from pioneering work on pri-
mal sketches and 2½-D sketches (Marr [2010]) to state-of-the-art convolutional neural networks.
Computations structured to operate on such representations can be thought of as implementing
a type of implicit constraint propagation, by performing local computations on 2D regions of
gradually increasing scope (or receptive �eld), and achieving global consistency via constrained
interactions at the boundaries of the local regions. In this sense, a variant of constraint propaga-
tion could be interpreted as underlying most work in mid- and high-level vision. I limit my sur-
vey of foundational work in visual propagation to techniques that are conspicuously constraint
driven, rather than techniques in which the constraint propagation emerges as a byproduct of
computational structure. Speci�cally, I consider techniques that explicitly model the constraints
under consideration. Explicit constraint propagators operate by re�ning a single description via
iterative application of the same set of constraints. A deep convolutional neural network satis-
�es neither the explicit-constraint criterion nor the single-description criterion, because in the
neural network the constraints are emergent properties rather than explicitly-represented ones,
and instead of applying its constraints repeatedly to the same evolving description, deep convo-
lutional neural networks build up a hierarchy of descriptions, each produced by one layer and
used by a subsequent layer. A �nal, important note on scope and terminology is that I use the

44



Observations about constraint propagation systems

term constraint propagation as it is used by Winston [1992]. Speci�cally, I do not limit its scope
to logical constraints of satis�ability problems as some authors do, but include the somewhat
idiomatic numeric constraint propagation family of propagation procedures as well.

Among representations that explicitly model constraints, there are several distinctions of
interest. One distinction is between numeric constraint propagators and symbolic constraint
propagators (Winston [1992]). Numeric constraint propagators operate on variables containing
information about discrete or continuous scalar or vector values, whereas symbolic constraint
propagators operate on variables containing symbolic descriptions. The symbolic representa-
tion space may be �nite, as in the case of the edge-label possibilities in Waltz’s procedure (Waltz
[1972]) or in�nite, for example, the space of natural-language sentences. Another distinguishing
factor among constraint propagator systems is whether the systems always honor consistency
while increasing speci�city under a set of constraints, or, alternatively, approach consistency as
determined by the constraints while remaining maximally speci�c.

In consistency-preserving systems, such as Waltz’s procedure, variables retain collections
of all currently-known permissible values at a given stage of constraint propagation. When
constraints are applied, they prune values from the collections of permissible values, making
the collections more speci�c. The dual of the consistency-preserving pattern is the speci�city-
preserving pattern. These systems start with some, possibly random, initialization of variables
that is maximally speci�c, as opposed to a collection of possibilities. By a process of iterated
application of constraints, or relaxation, the values assigned to the variables move toward consis-
tency as determined by the constraints. In such relaxation-based architectures, there is a danger
that the state con�guration may diverge or oscillate. In architectures that preserve consistency, a
danger exists that the system may fail to make progress in eliminating possibilities. This danger
of not reaching full speci�city even when solutions exist reveals another important distinguish-
ing factor among constraint propagators: whether the systems are pure constraint propagators,
solving constrained problems using propagation alone, or whether the systems employ explicit
search when they get stuck in con�gurations from which propagation can make no progress.

Other factors of variability exist in the world of constraint-based representations. For exam-
ple, certain constrained problems lend themselves to solution via well established optimization
methods. Problems of interest to me, however, tend to have many heterogeneous constraints that
would make framing the problems in such a way that they can be solved by established optimiza-
tion methods at best unwieldy to specify, and more likely intractable. Together, the distinctions
between numeric and symbolic, between consistency-preserving and speci�city-preserving, and
between pure propagation and propagation plus search represent important considerations when
designing propagator systems. In my work, I focused on systems that do not use explicit search.
The urgency of many of the goals that natural vision has adapted to serve clearly precludes ex-
tensive search in some cases. My interest is to address these cases rather than high-level visual
tasks where explicit search may become a relevant strategy. In the work described in Chapter
4, I found numeric constraints to be more prevalent and informative, and speci�city-preserving
methodologies that are implemented via relaxation avoid speci�c problems with scalability and
brittleness of logical absolutes (for in-depth discussion, refer to Section 4.4).

45



Applications of constraint propagation in vision

3.3 Applications of constraint propagation in vision
In this section I present and contrast with my work several notable early examples of constraint
propagation applied to vision problems: Horn’s procedure for deriving shape from shading,
Waltz’s procedure for determining 3D structure from line drawings, and Hinton’s work on using
relaxation to �nd globally consistent interpretations of �gures comprised of overlapping rectan-
gles.

3.3.1 Shape from shading

A method developed by Horn (Horn and Brooks [1989]) derives surface normals of a depicted
object in a single monochromatic image. The method makes use of two constraints: that nearby
pixels ought to have smoothly varying surface normals in most cases, and that the brightness
of a pixel speci�es a set of allowable surface normals on the corresponding isobrightness curve
of the re�ectance map, for a given surface material and lighting con�guration. The constraint
propagation algorithm is of the numeric, speci�city-preserving type according to the break-
down of constraint-propagation methods presented in Section 3.2, in which all variables contain
continuously-variable vector values, and the variables maintain maximum speci�city at all times,
gradually approaching consistency under the constraints. The surface normals for the pixels at
the edge boundaries of objects are known and left unmodi�ed by the constraint propagation al-
gorithm. The remaining pixels approach consistency via relaxation under the brightness and
smoothness constraints.

My work with propagation has several conceptual di�erences from this pioneering work on
estimating shape from shading. The most conspicuous di�erence is that instead of operating with
a small number of constraints arising from the physical interaction of light and surfaces, my work
on propagators uses many, heterogeneous constraints arising from many domains. An example
of a constraint that my system exploits is that people’s heights fall within a predictable range of
values. Rather than attempt to guarantee performance attributes such as convergence conditions,
I sought to build a framework that facilitates integration and evaluation of new constraints so that
performance can be measured empirically.

3.3.2 Waltz’s 3D-labeling procedure

Waltz developed a method of using constraint propagation to label the edges in line drawings rep-
resenting arrangements of objects with piecewise-planar surfaces (Waltz [1972]). Line segments
in such drawings can represent di�erent features of physical object arrangements, for example
cracks between blocks, concave boundaries, convex boundaries, shadow edges, and occlusions or
bounding limits. Junctions are de�ned as points where line segments meet, and are distinguished
by the number of intersecting line segments and the angles between each pair of segments in
the junction. Waltz identi�ed a �nite taxonomy of junction classes in drawings originating from
world states with certain restrictions, for example, the restriction that only a speci�ed number of
faces can share a vertex, and the restriction that junction types must be invariant to small changes
in viewpoint.

Constraints on the ways in which line-segment types can participate in particular classes of
junctions place limitations on the sets of allowable line-segment types. The constraint propaga-
tion process �rst prunes the allowable line-segment types based on the junction pairs that each

46



Applications of constraint propagation in vision

line segment connects with. Then, the process prunes the sets of allowable junction con�gu-
rations in each junction based on the updated sets of allowed types of each line connected to
the junction. Iterating the process until it reaches a steady state can e�ciently rule out many
internally-inconsistent interpretations of the line drawing, and in practice often converges to a
single global interpretation in which all line segments retain exactly one permissible label. Waltz’s
procedure is an example of symbolic, consistency-preserving constraint propagation according
to the breakdown of constraint-propagation methods presented in Section 3.2, in which vari-
ables contain sets of all possible symbolic assignments not known to be inconsistent, at a given
iteration of constraint propagation.

Initial work on expandingWaltz’s procedure In exploratory work that led indirectly to the
work described in this thesis, I implemented a probabilistic variant of Waltz’s procedure. Rather
than use a predetermined library of junction classes, such as arrow-shaped or T-shaped junc-
tions, I used a �ner-grained family of junction types determined by the number of edges and the
quantized angles between them. I developed a canonical representation for these junction types
to facilitate aligning them with one another. Using a physics simulation, I measured statistics
from many randomly-generated world states to estimate the frequency of each junction type.
The statistics were stored in a tensor representation. One rank-N tensor records the statistics
over all possible N - edge junctions (tensor indices are θ1, ..., θN−1, J , where θ` is a quantized
angle and J is the index of a unique junction labeling). The tensor associates quantized angle
measurements with a marginal probability distribution over all possible edge labelings. To label
a new line drawing, I converted the line drawing to a Markov random �eld, in which edges in
the original line drawing become the random-variable nodes in the MRF, each junction becomes
a clique, and the empirically-measured junction statistics determine the factor potentials of the
cliques. Inference is then a straightforward application of loopy belief propagation. Elements of
the process are illustrated in Figure 16.

The main di�erence between my work described in Chapter 4 and Waltz’s procedure is that
my work focused on the scenario where there are many heterogeneous constraints governing
local interactions, not all of which are strong logical constraints. For example, the observation
that humans are usually physically supported by other objects is not universal: a person could
be falling through the air or attached to an invisible wire. The constraint is nevertheless useful
as a guiding principle when interpreting scenes in which humans are present. Unlike my initial
work on expanding Waltz’s procedure using graphical models, in my subsequent work with prop-
agation I sought to �nd explicit constraints: those that can be described in terms of principled
analysis, rather than those that rely purely on statistical analysis.

3.3.3 Hinton’s work on relaxation

A notable early example of constraint propagation under uncertainty is Hinton’s puppet-�nding
program (Hinton [1978]). Hinton’s puppet-�nding program interprets the semantics of 2D draw-
ings consisting of overlapping rectangles. The inputs to the program are lists of rectangles spec-
i�ed as coordinates of their respective corners, and instructions to guide interpretation. Each
instruction has an associated numerical importance value, expressed as an unbounded real num-
ber, indicating how important it is to obey the corresponding instruction. The outputs are labels
for each rectangle and joint, specifying which part of a marionette-like puppet each represents.

47



Applications of constraint propagation in vision

(a) original image (b) line drawing

(c) edge statistics (d) line labels

Figure 16: Statistical reframing of Waltz’ procedure
In my implementation of a version of Waltz’s procedure extended to probabilistic inference, an image of
blocks (a) generated randomly in a simulation is automatically processed into a line drawing (b). Statistics
measured from many simulated arrangements are visualized for a speci�c 3-edge junction in (c). The statis-
tics enable reconstruction of the edge labels (d) via loopy belief propagation, a type of numeric constraint
propagation applied to probability values.

48



The propagator architecture

For example, the rectangles may represent head, neck, thigh, etc., and the joints may represent
knee, elbow, ankle, etc. The puppet-�nding program works by forming three interlinked net-
works of data structures representing rectangles, potential label hypotheses, and suppositions.
The supposition network contains numerical values corresponding to the initial importance, if
speci�ed, of each hypothesis, and a supposition value for each hypothesis that arbitrarily starts at
zero. The supposition network also implements constraints, which a relaxation algorithm uses to
iteratively update supposition values of a given node based on the supposition values of a node’s
neighbors.

The hypothesis network in Hinton’s implementation is initialized with locally-plausible inter-
pretations of joints and rectangles when such local interpretations exist. Built-in rules are used
to identify locally-plausible interpretations. For example, a rectangle that overlaps one other
rectangle and is wider than that rectangle is interpreted as a candidate head. After initialization,
the hypothesis network permits nuclei of highly-constrained interpretation to propagate, via the
supposition network, in a manner that is evocative of belief propagation in graphical models,
albeit without the requirement that the supposition values being relaxed have a de�ned meaning
in terms of a probability distribution.

This early work by Hinton anticipated key aspects of the problem of modeling robust visual in-
telligence: that vision systems need to formulate tentative hypotheses, that such systems need to
be able to �nd consistent sets of hypotheses, that constraints expressing the relationships between
hypotheses should be explicitly represented, and that a method that achieves constraint propa-
gation via relaxation is desirable. Such promising directions have been left largely unexplored by
contemporary vision research, for example, research involving deep neural networks. In direct
contrast with these early observations by Hinton, deep neural networks do not formulate tenta-
tive hypotheses in a meaningful way when they are feed-forward, because being feed-forward
precludes the ability to revise hypotheses. They do not �nd consistent sets of interpretations, but
rather operate by �nding interpretations that are similar to training examples, having no way
to evaluate the internal consistency of those interpretations. They do not explicitly represent
constraints; all constraints are instead emergent properties of the learned representation. Rather
than operating by relaxation or constraint propagation, most neural networks used in vision are
feed-forward and therefore may only operate on hierarchical descriptions. Subsequent work by
Hinton and others on deep Boltzmann machines and other neural network architectures that can
perform feedback may provide a route to hypothesis generation and testing via relaxation, but
still fall short of the ability to explicitly represent constraints. My work aims to address both of
these issues.

3.4 The propagator architecture
The architecture I describe in Chapter 4 is inspired by pioneering work on a propagator-based
programming system by Sussman and Steele [1980] and further developed by Sussman and Radul
[2009] and Radul [2009]. This propagator architecture addresses shortcomings of expression
evaluation, which is the foundation of almost all modern programming systems. In particular,
the propagator architecture permits components to operate independently on partial results of
computations, rather than having to wait for a computation stage to be completed before using
its results, as is the case with expression evaluation. A program implemented in this propaga-
tor architecture comprises a set of stateless propagator machines, and a set of cells that store

49



The propagator architecture

and manage state. The sets of propagators and cells connect with each other to form a bipartite
computation graph in which edges represent paths along which information can �ow in either
direction. Cells store information about values, rather than values themselves. For example, an
empty cell that is capable of representing real values would be interpreted as potentially contain-
ing any real number. A propagator connected to such a cell could push an update that speci�es
that the value of the real number in question is greater than 0. The cell then noti�es the system
that its domain has been reduced, and sometime later its connected propagators are applied to
spread the e�ects of the domain reduction throughout the graph. Bidirectional information �ow
allows propagators to enforce relations among connected cells, rather than limiting them to en-
forcing simple functions that map input to output. The order of execution of propagators is not
speci�ed in the description of a system of propagators and is expected to not have an e�ect on
the values of cells at quiescence, after all updates have been processed and no further information
can be accumulated in any cell. This property allows �exibility in a propagator system’s control
�ow: the scheduler may opportunistically execute propagators, and it should have no e�ect on
the quiescent value of cells whether propagators are simulated by a uniprocessor or whether they
are all parallel, independent machines.

Cells track and monitor their updates. The tracking enables analysis of data provenance, by
showing which supplied data support a given conclusion through which chain of deductions.
The monitoring allows detection of con�icting updates: for example, if one update speci�es that
a real-valued cell’s value must be greater than 0, while another speci�es that the value is less
than −1, then the cell will signal that an error has occurred. The propagator architecture al-
lows for �exibility in the way such errors are handled. The system may signal an error and then
either halt or enter an error-handling context in a way that is familiar in most programming en-
vironments. Another option is based on dependency-directed backtracking, (Stallman and Suss-
man [1977], Zabih [1988]), with which the system optimizes the search for mutually-consistent
sets of assignments based on remembering which minimal subsets of assignments are mutually
inconsistent. Dependency-directed backtracking empowers truth-maintenance systems (TMS)
(McAllester [1978]) which allow propagator systems to reason about several internally-consistent
but mutually-inconsistent worldviews simultaneously.

The propagator architecture of Sussman and Radul [2009] was an appealing candidate for my
work with alignment in vision, because it provides a principled and elegant way to express how
the components of a complex system interact via their shared states and representations, without
needing to compromise on such principles or elegance in order for the local interactions to give
rise to complex behavior. The architecture thus invites the opportunity for surprise, rather than
bewilderment, about any complex behavior that does emerge from the local interactions among
semantically well-characterized components. I believe that it will be by way of such surprises
that we will discover explanatory theories of our own intelligence, rather than mere statistical
characterization of our intelligence’s inputs and outputs.

In Chapter 4 I explore the implementation of a simple vision system that uses propagators.
Development of the system led to insights about di�culties in applying the architecture to some
problems of interest in vision, and eventually to ways to integrate propagator-like components
with neural networks, as I present in Chapter 5.

50



Summary

3.5 Summary
In this chapter, I reviewed a set of distinctions among propagation methods: whether they are
symbolic or numeric, whether they are consistency-preserving or speci�city-preserving, and
whether they use pure propagation or propagation combined with explicit search. I determined
that the architecture of most interest in this work is the numeric, speci�city-preserving type
that does not use explicit search. I discussed three early uses of propagation in vision: Horn’s
shape from shading, Waltz’s edge-labeling procedure, and Hinton’s work on using relaxation al-
gorithms to �nd puppets. I introduced the inspiration for the propagator architecture that I used,
and motivated the architectural choice.

51



4. Processing a Scene with Propagators

4 Processing a Scene with Propagators
In this chapter you learn about my work on implementing vision systems using an alignment-
driven methodology and a propagator architecture. I present the implementation of a system
that uses propagators to track pedestrians and uses the tracking along with constraints to in-
fer geometric properties of the scene like ground-plane position and occluder locations. Figure
17 depicts example output of the system. I also present an in-depth discussion of the system’s
limitations in order to break free of those limitations.

Figure 17: Example output of propagator system

One ability of the propagator system that is the subject of this chapter is to use pedestrian tracks, along
with knowledge about average adult height, to estimate the parameters of the ground plane. The ground
plane is shown in green where supported by observed tracks. Grid squares are 1m.

4.1 Introduction
To make progress toward providing story-understanding systems and general problem solvers
with the ability to visually perceive and understand events, I believe we need to build ways to
infer the geometric constraints of 3D scenes in which events occur. To realize the potential of
pervasive alignment of partial information to give rise to robust perception, as discussed in Chap-
ter 1, it is essential that high-level knowledge derived from story-level processing of events be
able to direct and in�uence the way that low-level data are interpreted. The state of the art in
AI reasoning systems with a visual input is illustrated in Figure 18 (top). Perception is mod-
eled as a multi-stage feed-forward process in which higher stages model the uncertainty of the
lower stages supplying the information, in order to resolve ambiguity. The proposed alignment-
based architecture is depicted in Figure 18 (bottom). In this type of architecture, the perceptual
apparatus accepts feedback from the story understanding system. This feedback contributes to
an evolving understanding of scene geometry, allowing high-level information from the story
processor, such as known dimensions of objects, to have direct bearing on how low-level scene
characteristics, such as depth maps of supports and occluders, are generated.

52



Introduction

DEPTH-ESTIMATE
NEURAL NET

MARKOV
RANDOM FIELD

HIGH-LEVEL
REASONING SYSTEM

NOISY DETECTION REFINEMENT DECISION

VIDEO FRAMES

STORY-
UNDERSTANDING

SYSTEM

VIDEO FRAMES

DEPTH ESTIMATES
PERSON

DETECTION

GEOMETRIC
CONSTRAINT

HEIGHT
ESTIMATES

MOVEMENT
CONSTRAINTS

"Obstacle A is approximately 6m away"

→ "Obstacle A is approximately 6m away."

← "Note that Person B is 1.8m tall."

→ "Then Obstacle A is actually 4m away."

← "How do you know?"

→ "Because Person B is standing behind Obstacle A."

VISUAL PROPAGATION SYSTEM

"Obstacle A is approximately 6m away."

Figure 18: Comparison of propagator and pipeline approaches

The feed-forward approach (top) cannot directly assimilate high-level knowledge in the interpretation of
low-level stimuli, relying instead on a hierarchy of probabilistic graphical models to resolve uncertainty.
The visual propagator architecture (bottom) allows integration of high-level information, e.g. height of
a known actor, into processing of scene-level constraints such as depth maps of occlusion boundaries.
Furthermore, the visual propagator architecture can o�er justi�cation for its output.

In this chapter I present a case study in pursuit of alignment using the propagator mecha-
nism introduced in Chapter 1 and expanded on in Chapter 3. I introduce a vision system that I
implemented based on that propagator mechanism. The design of this system, and the insights
revealed by the implementation, represent a step toward realizing the capability depicted in Fig-
ure 18. Given video taken from a stationary vantage point in an outdoor urban scene, the system
can combine information from tracked objects with externally-supplied information, of the type
that a story-understanding system could provide, to make inferences about scene geometry. The
system can then transfer the resulting knowledge about scene geometry to new foreground ob-
jects, providing justi�cation for its inferences in terms of both its own observations, and the
externally-supplied knowledge.

The vision system presented here serves as a simplest complex example: an example with just
enough complexity to demonstrate how the propagator system’s components function together
in a real-world scenario. The design goal of the system was to achieve proof of concept and to

53



Experimental setup

motivate and inform further development using a propagator-driven design methodology, not to
outperform state-of-the-art computer vision systems on benchmarks. As such, my emphasis is on
describing how the system works and on demonstrating its output on some examples, rather than
quantitatively evaluating its performance. In some ways, the system did not realize the design
goal. In particular, it was problematic to achieve pervasive alignment, which is required by the
alignment hypothesis that is the central theme of this work. The e�ort did yield extensive insight
into such problems, and how to address them.

The rest of this chapter is organized as follows. I describe the setup in Section 4.2, including
the type of data collected and the additional inputs and outputs of the system. I present details of
the implementation in Section 4.3 with emphasis on aspects that I believe are widely applicable
and present examples of the system’s performance. In Section 4.4 I discuss lessons learned from
observed shortcomings of the approach, and ways to take the concept to the next level.

4.2 Experimental setup
Although the methods described in this chapter use input from only one camera, I collected video
data simultaneously from two �xed cameras, using the �xture shown in Figure 19. Processing
the video from the additional camera produced stereo disparity maps to evaluate the accuracy of
geometric measurements. An example stereo image pair from the cameras is shown in Figure 20.
The two cameras were 0.5 meters apart, and positioned so that their respective optical axes and
x and y axes were parallel. Video frames were captured at 30FPS, in RGB, and with a resolution
of 640x480 pixels per frame. Additionally, the camera positioning ensured that the image plane
was vertical, simplifying the relationship between image height and object height.

Figure 19: Data-collection apparatus

The cameras used for data collection were placed 0.5m apart with all axes parallel. The cameras are posi-
tioned so that the images are co-planar and the y axes in camera coordinate space are vertically oriented.
The �xture adheres to the outside of the MIT Stata Center using suction cups.

54



Implementation details

(a) Left Camera Image (b) Right Camera Image

Figure 20: Stereo images from the camera array
The left and right images from the cameras illustrate the large stereo disparity. The checkerboard pattern
in these images served as a calibration target to estimate the intrinsic matrices for the cameras.

The system produces bounding rectangles and unique identi�ers for tracked objects, as illus-
trated later in the chapter in Figures 29 and 30. Additionally, the system produces locations where
pedestrians commonly enter and exit the scene, as depicted in Figure 31. The system also approxi-
mates distances from the focal plane to foreground objects and background occlusion boundaries
when available, along with detailed support information that links the inferences about scene
geometry to the speci�c observations of tracked foreground objects that support each inference.

4.3 Implementation details
4.3.1 Abstractions

I used many of the same fundamental abstractions used by Radul [2009]. Propagators are state-
less machines that respond to changes in their connected cells. Cells store state, and notify their
connected propagators when that state changes. The cells should not forget information; propa-
gators must issue only updates that increase the speci�city of cells’ states. A scheduler oversees
execution of the propagator graph by executing all propagators attached to a cell whenever the
cell accumulates new information. Figures 21 and 22 depict summaries of the most essential
classes and interfaces that de�ne my propagator system.

55



Implementation details

Sequence Recorder

Allows instances of sequence 
types to be serialized.

Sequence Cell

Cell type for quantities expected to have 
values at (almost) every video frame. 
Provides indexing, slicing, searching, and 
garbage collection.

Light Sequence Cell

Discards Supports (provenance 
structures) for beer serialization 
and memory performance.

Sparse Sequence Cell

Cell type for quantities expected 
to have values at few frames.

Cell

+ merge(u1, u2)

+ notify(hint)
     Called by Scheduler to cause connected 
propagators to run. Argument hint is 
understood and provided by Propagators.

+ update(u)
     Called by Propagators to update this 
cell's value.

Support

Data-provenance structure. 
Represents hierarchy of 
dependencies for any update 
or for any Cell's contents.

Summary

Compressed version of a 
Support. Hash-compatible for 
weak equivalence testing. 

Scheduler

+ run_all()
    Run until quiescence.

+ schedule(thunk)
    Add thunk to schedule. 
Oen called by Cell's update.

+ next()
     Run one thunk.

+ centroid()
+ area()
+ avg_flow()
    Average optical flow.
+ support()
+ bounding_rect()
+ contours()
+ image()
+ flow()

Blob

Represents a foreground 
region.

Blob Set

Represents a collection of 
Blobs and presents the same 
set of methods as Blob.

Track

Represents a track of an 
object over time as a 
sequence of BlobSets.

+ merge(other)
    Argument other is a 
Blob, BlobSet, or Track. 
Returns a merged Track.

+ connect(cell)
    Connects the associated 
Propagator to cell.

Slot

Placeholder for named 
connection between 
Propagators and Cells.

Slot Instance

Support Metric

Facilitates comparison (and search) based 
on data-provenance supports. Abstract.

Any

Disregard data 
provenance and 
return any value.

Closest

Heuristic based on tree edit distance. 
Returns datum that is supported by 
most-similar hierarchical Support.

Propagator

many subclasses
(refer to Figure 22)

*

Figure 21: Inheritance and interface summary for low-level propagator system

In this sample of components within the part of the propagator system that deals with low-level visual
processing, arrows indicate the inherits-from relation. Where appropriate, a representative sample of
methods are shown. Many components, listed in Figure 22, inherit from Propagator and several classes
(not shown) specialize Cell.

56



Implementation details

Propagator subclasses:

NonZeroAreaContoursMoments
EqualizeHistogram
AverageOpticalFlow
SequencePropagator

* CLAHE
VideoSource
Moments
NaiveMergeProposer

Sequence Propagator subclasses:

BuildIndexMap
BlobFlowView
MakeBlobs
IntersectionViewer
SyncedTrackViewer
ImageViewer
ShiContoursC
TrackViewer

FGMaskCleanerStage1
DenseOpticalFlow
OuterContours
NaiveMergeValidator
RemoveZeroAreaContours
UIPump

ConnectedComponents
MakeGray
MaskApplier
MaskFromContours
BackgroundPropagator
ForegroundAnomaly

ShiContours
ConnectedComponentViewer
IntersectionViewer2
SyncGenerator
MeasureOverlaps
Viewer
BlobEnqueue
OpticalFlowViewer
MakeMutableBlobs
AverageOpticalFlowC

Figure 22: Propagator subclasses

The subclass hierarchy of Propagator used in this implementation contains 37 classes.
SequencePropagator provides conveniences for propagators that interact with sequential data.

The system contains 37 propagator subclasses, with functions ranging from simple tasks
such as sourcing frames from cameras or video �les (VideoSource), to specialized tasks such
as �nding all connected components in a mask (ConnectedComponents), updating a mixture-of-
Gaussians background model (BackgroundPropagator), and performing contrast-limited adap-
tive histogram equalization (CLAHE). The system contains 6 subclasses of Cell: BackgroundModel
which specializes in mixture-of-Gaussians background models, TrackCell for storing tracks of
objects, SequenceCell for storing sequences of descriptions, SparseSequenceCell for storing
sequences that are not expected to have a specialized value at every sequence number, and
LightSequenceCell which ignores provenance objects to reduce resource use. Out of necessity,
sequential-valued cells must forget state that is no longer being used by the propagator system
to avoid running out of memory. A sophisticated garbage collector could use support informa-
tion to prune sequences, but this implementation uses a simple time horizon to remove old cell
contents. Additionally there are Support classes which represent provenance of updates and cell
values, SupportMetric types that facilitate comparison of updates or cell values base on their
provenance hierarchy, and various infrastructure classes: Slot objects are markers used by the
framework to record a Propagator subclass’s availabile connection slots, and SequenceRecorder
objects record a network’s activity for playback later, so that computation that is resource con-
strained can be split up and processed in stages. The Track class and its variants are used for
object tracking.

To demonstrate how the abstractions simplify the implementation, Listing 1 contains an ex-
ample of a full implementation of a propagator. In this case, you see AverageOpticalFlow, a
propagator that integrates optical �ow inside of foreground contours to produce approximate
average translation vectors for each contour. The CPU-intensive part is relegated to an external
library that I implemented in C++.

57



Implementation details

1 class AverageOpticalFlow(SequencePropagator):
2 """
3 computes the average optical flow within each contour
4 """
5 #pre-computed areas of contours:
6 in_areas = Slot()
7 #lists of contours:
8 in_contours = Slot()
9 #map of optical flow, calculated at every pixel location:

10 in_flow = Slot()
11 #lists of optical flow vectors, same dimension as in_contours:
12 out_flow = Slot()
13 def propagate(self, cell, hint):
14 SequencePropagator.propagate(self, cell, hint)
15 #is the cell that notified us one of our inputs?
16 if self.is_relevant(cell):
17 #hint provides index and support of the input, to save rework
18 seq_num,support = hint
19 #do all required inputs have values at this seq_num?
20 if self.input_ready(seq_num):
21 #NB: Closest() is one way to compare support objects. it instructs
22 #the cell to choose the value that has the most recent common
23 #ancestor to support in terms of its derivation.
24 areas,a_support = self.in_areas.select(seq_num,Closest(support))
25 contours,c_support=self.in_contours.select(seq_num,Closest(support))
26 flow,f_support = self.in_flow.select(seq_num,Closest(support))
27 #create a new support object, noting how our output was derived and
28 #the support objects it depends on
29 support = Support('average-optical-flow-per-blob',
30 depends=(a_support,c_support,f_support))
31 #make sure our output hasn't already received an update with the same
32 #sequence number and support. If it had, we could still submit an
33 #update to it provided we did not change its value, but doing so would
34 #waste effort.
35 if not self.output_stale(seq_num, support):
36 #adkcv.averageOpticalFlow is in a fast library that does the actual
37 #work. I implemented it and many other external routines in C++,
38 #not shown
39 blob_flows = adkcv.averageOpticalFlow(flow,contours,areas)
40 #match shape of the pure python implementation
41 blob_flows = np.expand_dims(blob_flows, 2)
42 #finally, call the output cell's update method to register the update
43 self.out_flow.update(blob_flows,seq_num,support=support)

Listing 1: Implementation of a Propagator that computes average optical �ow

58



Implementation details

Note that the propagator implementation in Listing 1 imposes directionality on the data �ow
of its connected cells. The cells connected to the slots in_areas, in_flow, and in_contours are
treated like inputs, whereas the cell connected to out_flow is treated like an output. In gen-
eral, the propagator framework imposes no such restriction on cells. Propagators are noti�ed
(resulting in their propagate() method being called) whenever the value of any of their con-
nected cells changes. The AverageOpticalFlow example shown ignores updates from the cell
designated out_flow because the inverse of its computation is unde�ned. We can learn about
the out_flow cell from the in_* cells, but not vice versa, so the out_flow cell happens to be un-
informative as an input to this propagator. Higher-level components presented in Section 4.3.3
exhibit bidirectional data �ow.

4.3.2 Locating foreground regions

The goal of the �rst stage of processing is to identify regions of each video frame corresponding to
objects of interest in the scene, such as pedestrians. The entire propagator subgraph leading from
raw video frames to foreground regions annotated with optical �ow maps is depicted in Figure
23, with example cell visualizations shown in Figure 24. In the processing involved in identify-
ing foreground segments, the propagator architecture leads only to representational convenience
and simpli�ed program �ow control rather e�ecting any paradigmatic change. In particular, as is
the case with any framework that represents the graph structure of a computation while leaving
control �ow unspeci�ed, the propagator architecture provides useful modularity, ease of paral-
lelization, and convenient ways to visualize data �owing through the graph. At this �rst stage
of processing, however, there are no computations that take advantage of the propagator archi-
tecture’s bidirectionality, its potential for multiplicity of computational origin for cell updates,
or iterative re�nement or relaxation of cell values beyond a single update per cell per frame of
video. In Section 4.4 I revisit ways to take advantage of such unique propagator capabilities in
early processing.

59



Im
plem

entation
details

Figure 23: Flow graph of low-level processing
In this map of the �rst stage of visual processing, circles represent cells and squares represent propagators. Visualizations of selected cells are in
Figure 24.

60



Implementation details

Having a stationary camera makes it possible to build a pixel-wise color model of the back-
ground over time, so that the foreground can be identi�ed easily when pixel values do not �t
the background color model. I used a method based on adaptive Gaussian mixture models by
Zivkovic [2004] and Zivkovic and van der Heijden [2006]. The Zivkovic background subtractor
extends the background subtractor of Stau�er and Grimson [1999] that models the background
color as a mixture of K Gaussian distributions. The Zivkovic background model chooses the
parameter K adaptively. The resulting pixel-wise foreground segmentation, shown in Figure 24,
is noisy and requires smoothing. Smoothing is achieved via a combination of blurring, thresh-
olding, and morphological operations implemented in the FOREGROUND MASK propagator as
shown in Figure 23.

Another branch of the graph computes dense approximate optical �ow via the method of
Adarve and Mahony [2016] using the authors’ GPU-based library. Although this method of com-
puting optical �ow is computationally cheap compared to other methods, it tends to produce
spurious �ow in regions nearby to moving regions, so it needs to be masked by clipping at the
edge of foreground regions. The optical �ow is used to compute average motion of each fore-
ground region between consecutive frames, which in turn enables a primitive object tracker to
generate short tracks of objects using conservative rules about intersection area versus union
area in the forward-projected foreground regions from frame N − 1 onto frame N . These over-
segmented tracks are stored to disk for segmentation into longer tracks of objects by the next
stage of processing. The short track segments are connected by weighted edges to form a di-
rected acyclic graph (DAG), in which edge weights represent area of overlap between foreground
regions on consecutive frames.

4.3.3 Tracking objects

Once the system has built up a DAG from overlapping foreground regions, the next question of
interest is how to group the foreground regions into tracks, de�ned as time-ordered collections
of foreground segments corresponding to the same physical object, or associated group of objects
such as groups of pedestrians or people riding bicycles. Although foreground segmentation has
simpli�ed this problem, the problem remains complicated for several reasons:

• Foreground objects that occlude each other appear as a single foreground region.

• Inconsistent foreground segmentation can lead to splitting, merging, and momentary dis-
appearance of foreground regions.

• Optical �ow is a noisy, approximate proxy for actual motion of objects.

• Building appearance models to recognize speci�c objects is a deep subject.

Many features that inform tracking of objects are expensive to compute, while others are
computationally cheap. Furthermore, there are some decisions that may rule out any reason-
able possibility that two regions correspond to the same object, for example, if the merger of
those regions would require the corresponding objects to have moved unreasonably far between
frames. Other decisions have the opposite e�ect: two foreground regions that remain identical
between frames are unlikely to correspond to anything other than the same objects. The promise

61



Implementation details

(a) Raw foreground (b) Filtered foreground

(c) Masked foreground (d) Masked optical �ow

(e) Sifted contour masks (f) Over-segmented tracks

Figure 24: Summary of low-level processing
The �rst stage of the system processes video frames with a background model to obtain raw (a) and �ltered
(b) foreground and segmented foreground regions (c). Using optical �ow (d) to measure movement between
frames, the segments are compared based on the degree of overlap between neighboring frames (e) in order
to �nd an over-segmented representation of object tracks (f). Captions correspond to cell names in Figure
23. 62



Implementation details

of the propagator architecture is not only to make inference more accurate via exploitation of
constraints, but also to prune unnecessary computation: if we are highly con�dent that regions
should be merged together into a track, we should perform the most computationally frugal ex-
periment to con�rm our suspicion rather than going out of the way to quantify, in probabilistic
terms, exactly how con�dent we should be.

In fact, it is possible to build propagator systems that have all of these desirable properties
and several more. In this section I show how to build a decision process out of propagators and
cells that builds up tracks by merging other tracks. The system can quickly rule out unlikely
mergers without wasting computation �guring out exactly how unlikely those mergers are. The
system can also quickly validate mergers that are practically certain to be correct, without wasting
resources quantifying the probability of error. It can achieve these goals within a framework
that leaves control �ow up to a scheduler that can optionally decide to optimize performance
using measured statistics about out-of-band aspects of propagators that do not bear directly on
classi�cation ability, such as their computational costs and resource requirements. The scheduler
may make trade-o�s between out-of-band factors and the propagators’ expected in�uences on the
�nal decision, because the order of execution of propagators is irrelevant to the �nal decision.
Finally the system can optionally be tuned, with enough training data, to make statistically-
justi�ed decisions, in which the individual propagator components output probability values that
re�ect the measured statistics of some data distribution.

The intuition behind the decision system that evaluates mergers of tracks derives from cas-
cade classi�ers, which were �rst introduced as a part of the Viola-Jones face detector (Viola and
Jones [2001]). In this section I brie�y review cascade classi�ers. I then present my work on taking
cascade classi�ers to the next level in the form of symmetric cascades. I describe how symmet-
ric cascades generalize from the cascade classi�ers used to detect faces in order to achieve the
additional properties sought for merging tracks. Additionally, I describe how symmetric cascades
can be applied in a machine-learning framework. Finally, I describe in detail how I use symmetric
cascades to group over-segmented tracks into long, consistent tracks.

Review of cascades Conventional cascade classi�ers apply a focus-of-attention approach to
classi�cation, in which a sequence of classi�ers is applied to the parts of the image that have
not been ruled out yet by previous classi�ers. Each classi�er in the cascade operates on a single
feature. Each classi�er is also tuned so that the false-negative rate is very low, even though the
false-positive rate may be very high as a result of the tuning. The classi�ers in the sequence
are also ordered, so that computationally-cheap classi�ers are executed �rst, and more expen-
sive classi�ers are reserved for sub-regions of the image that are not quickly ruled out by the
computationally-cheap classi�ers. A variant of AdaBoost (Freund and Schapire [1997]) is used
to select the sequence of classi�ers from a much larger set of candidates, so that the resulting
boosted classi�er is very unlikely to produce a false positive.

A useful intuition for thinking about cascades is to consider each individual classi�er in the
cascade as a strong rejector and a weak acceptor. It can decide to reject or defer, and a su�-
ciently long sequence of defer decisions for the same region by di�erent classi�ers constitutes
an accept with high probability. In more speci�c terms, suppose the false-positive rate, de�ned
in this context as the proportion of the time the object in question is absent and classi�er i de-
cides to defer, is ei. Assume that the decision of each classi�er is approximately independent of

63



Implementation details

the others. That assumption is reasonable if the feature representation concisely represents the
independent factors of variation in the target class. Then the overall false-positive rate, E, of the
combined classi�er is given by:

E =
K∏
i=1

ei (2)

Even if the individual ei are high, E becomes geometrically lower with each classi�er added
to the cascade. Improving matters further, the downstream cascade stages can be more compu-
tationally expensive without adding much cost to the whole cascade, because they are run with
much lower frequency than the earlier stages. They can therefore a�ord to have lower false-
positive rates than the earlier stages, and dramatically improve precision at low cost.

Symmetric cascades In order to empower propagators to track objects, I take cascades to the
next level by incorporating two changes. I call a cascade incorporating the changes a symmetric
cascade. The changes enable e�cient object tracking but I expect that symmetric cascades will
be useful generalizations of cascades for other problems as well. The changes are as follows:

1. In addition to being able to reject or defer, units in a symmetric cascade may accept,
halting computation on a sub-problem with a positive result.

2. In the case of defer, units in symmetric cascades update a numerical measure of con�dence
in the outcome.

The �rst generalization permitting accept allows more e�cient pruning of the computation
by permitting computation to stop when one unit performs a test that results in practical cer-
tainty of a positive outcome. The ability to accept early imparts a new symmetry to the cascade’s
computation: it can stop early and save work by either accepting or rejecting, whereas an ordi-
nary cascade is asymmetric in that it can only stop early if it rejects. The second generalization
requiring numerical con�dence updates rather than discrete answers allows several out-of-band
optimizations to take place: computational complexity can be traded for accuracy if need be, and
reliable bounds can be placed on the �nal con�dence without doing the work to determine an
exact numerical value of that con�dence.

To make things concrete, let T be a binary random variable. Let pT (i) ≡ P (T = 1|F0 =
f0, ..., Fi = fi), the probability that T = 1 given observations of some set of features up to
and including feature measurement fi. The role of the symmetric cascade is to predict the value
of T by estimating this probability, while considering as few features as possible to achieve a
desired con�dence in the outcome. That is, the symmetric cascade computes p̂T (i) for 0 ≤ i ≤ N
such that p̂T (i) is a good estimate of pT (i), and furthermore that pT (i) is an estimate of pT (N)
that satis�es some con�gurable bound. An instance of a symmetric cascade consists of a set and
ordering of features Fi to evaluate, and rules for determining when to stop the computation when
the outcome of T can be predicted with high enough con�dence.

I �rst discuss how I implement a symmetric cascade. A useful aid in implementing symmetric
cascades within the propagator framework is to separate the required state variable apart into

64



Implementation details

scalar values that change monotonically during a computation. By de�nition, cells record mono-
tonically increasing information about values rather than values themselves. While it is not strictly
necessary for cells to contain monotonically-changing scalar values, it does simplify bookkeeping
and facilitate code reuse, and, as I show later in this section, has additional bene�ts for the in-
terpretation of symmetric cascades from a machine-learning perspective. Recall that cells record
information about the parameters of a probability distribution p̂T (i) that approximates the true
data distribution pT (i). I represent the approximate distribution p̂T (i) in terms of two additional
parameters, the accept accumulator Ai, and the reject accumulator Ri:

p̂T (i) ≡
Ai

Ai +Ri

(3)

Ai and Ri are de�ned to have identical domain [0, 1]. Each pair of these variables, except for
the error condition in which they are both 0, speci�es a value of p̂T (i), and every p̂T (i) determines
Ai and Ri up to a common scale factor. Ai and Ri are computed as the respective products of
factors supplied by each each unit in the symmetric cascade:

Ai ≡
i∏

k=1

ak, Ri ≡
i∏

k=1

rk (4)

Each unit in the symmetric cascade emits values for ai, $ri,$ or both; the requirements of the
cascade unit’s output are that the unit must not emit ai = 0 and ri = 0, and the domain of
both ai and ri is [0, 1]. There is redundancy in these variables insofar as they represent p̂T (i).
For example it is possible to con�gure each unit so that it always outputs 1 for either ai or ri
without loss of generality. The cell responsible for representing p̂T (i) at every stage in the cascade
need only store the current values of Ai and Ri. Because the updates are all in the range [0, 1],
their products Ai and Ri are monotonically decreasing in value, and so the valid interval of each
of these variables is represented succinctly by the variable’s current value. The �nal essential
technical detail needed to make the system work is that it must be known a priori whether each
propagator in the symmetric cascade is capable of emitting values of ai and ri such that ai < ri,
or such that ai > ri, or values that obey neither restriction. In practice this is easier than it may
seem: certain features may weigh strongly for or against the expected outcome of T if present,
but provide no information if absent.

I now show how these de�nitions lead to the sought after properties in the generalized cas-
cade. Fast acceptance and rejection are achieved by having a unit emit 0 for one of ai or ri, which
collapses the value of p̂T (N) to a degenerate probability distribution. Emitting ai = 0 causes
immediate rejection, whereas emitting ri = 0 causes immediate acceptance. All processing on a
value may stop after receiving such an update, because no subsequent valid update can have an
e�ect on the value of p̂T (N).

Because Ai and Ri are products of updates, the order of the updates has no e�ect on their
values. This gives the scheduler leeway to structure the computation in serial or in parallel, and
to order the individual propagator execution however is most convenient. Formally, in terms

65



Implementation details

of the de�nitions presented here, this means that any feature set of length N potentially gives
rise to N ! distinct symmetric cascades that each estimate the function pT (N). Many schedul-
ing strategies can emerge to choose the order of the feature propagators. A scheduler could, for
example, execute �rst the propagators that are likely to collapse the distribution, increasing the
chance that it may stop work early. A related strategy is to order the executions so that propaga-
tors that are likely to have large in�uence on the value of p̂T (N) are executed with high priority.
Computation can optionally be halted early if the value of p̂T (i) falls below a rejection threshold
or rises above an acceptance threshold. Of course, unlike in conventional cascades, there is no
general guarantee in a symmetric cascade that p̂T (j > i) will remain below or above such thresh-
olds as computation continues. Thus it must be understood that a strategy of stopping when a
threshold is crossed merely approximates the process of running all propagators to completion,
and constitutes a trade-o� between correctness and e�ciency. It is nevertheless a useful tool for
a propagator system to have in its arsenal.

If no sacri�ce of correctness for e�ciency is acceptable, there is a more conservative strategy
that still o�ers e�ciency bene�ts over a conventional cascade. Suppose that during execution
a scheduling process observes that p̂T (i) rises above an acceptance threshold LA. Because it is
known a priori which propagators have the potential to emit values that may cause the running
estimate p̂T (j > i) to only increase, to only decrease, or to either increase or decrease, the sched-
uler can skip propagators that can only cause an increase. That is, if all propagators run that can
emit aj, rj pairs potentially causing p̂T (j > i) < p̂T (i), and the working estimate p̂T (j) remains
greater than thresholdLA, it is safe to halt the computation: no amount of further work can cause
the estimate of p̂T (j) to fall below LA. An analogous strategy exists for rejection thresholds.

If the scheduler has access to probabilistic bounds on the values of ai and ri emitted by each
propagator, it can use such statistics to implement a compromise between the simple, stop-at-
threshold approach and the conservative, rule-out-alternatives approach. For example, suppose
that the working estimate of p̂T (i) rises above acceptance threshold LA, and the probabilistic
bounds on the values of aj>i that can be emitted by the remaining propagators indicate that with
probability q, it will remain true at the �nal step N that p̂T (N) > LA. Then, we may terminate
if q exceeds a meta-certainty threshold. In this case q quanti�es certainty based on ongoing
self-measurement about whether the system will remain con�dent about its answer if it were to
execute all propagators that could potentially reduce its con�dence. If q passes muster we can
halt execution of propagators and be reasonably con�dent in the answer at step i.

It has always been a di�cult task to design classi�ers that can be optimized on the �y for dif-
ferent measures of performance, such as speed, resource use (especially out-of-band resources,
e.g., battery energy), con�dence in answers, and �exibility to changing operating conditions. It
is much easier, generally speaking, to measure aspects of performance, and nearly all attributes
of propagators in the generalized cascade that bear on performance can be measured empiri-
cally. When computations are broken up into reorderable sub-units as they are in the symmetric
cascade, it becomes possible to use data from such measurements to restructure classi�cation
pipelines on the �y to optimize for whatever performance metrics are most relevant under a set
of operating constraints. A scheduler process implementing this kind of �exibility could start out
by running all available propagators in some arbitrarily chosen order, and measure the statistics
in question over many executions. Then, once it collects su�cient information, the scheduler can
begin planning the order of execution to optimize a performance measure. It could, for example,
order propagators by increasing resource use, by increasing expected value of ai and ri, or some

66



Implementation details

combination thereof.
Throughout the discussion of generalized cascades, I have taken for granted that p̂T (N), the

approximation of the true data distribution described by pT (N), is a good approximation. The �-
nal and perhaps most profound aspect of symmetric cascades that I discuss here is that symmetric
cascades can be learned from training data, in a way that validates this assumption.

In a conventional cascade, it is not necessary to know the conditional probability of a positive
outcome at any given step in the cascade. If the outcome is negative (reject) it is assumed that
the probability in question is negligibly small, and if the outcome is positive (N defer answers
in a row) then, although we can approximate the conditional probability of error as the product
of the false-positive rates of all detectors, this estimate provides little actionable information as
it should always be the same. By contrast, a symmetric cascade is expected to stop early in both
accept and reject scenarios, and should it execute all N stages without encountering a stopping
condition, that would suggest that the question of interest is di�cult to answer. We would not
expect the conditional probability at stage N to be close to 0 or 1, and it would be helpful if it in
fact re�ected measured statistics about some training data, so that it could be used as input to a
di�erent classi�cation strategy that can make use of the uncertainty measure. Another reason to
want the conditional probability modi�ed by each stage in the symmetric cascade to be grounded
in measured statistics is that acceptance or rejection may be due to a threshold computation, as
discussed, rather than due to the distribution collapsing to exactly 1 or 0, and in such cases it
is desirable to have con�dence thresholds that are interpretable as tolerated error rates of the
cascade.

When considering how to accurately represent pT (i) via the symmetric cascade, the bene-
�t of the de�nition p̂T (i) ≡ Ai/(Ai + Ri) becomes clear. This is the form of a naive Bayes
classi�er. Therefore, assume the naive Bayes criterion that all P (Fi|T ) are independent. Let
A0 ≡ P (T = 1), and R0 ≡ P (T = 0) = 1 − P (T = 1). These priors can be measured empir-
ically from training data. Let ai and ri respectively be approximations of P (Fi = fi|T = 1) and
P (Fi = fi|T = 0), resulting from �tting parameterized probability distributions to the features
observed in some training data. With these de�nitions and under the naive Bayes assumption, the
symmetric cascade is an instance of a naive Bayes classi�er, where the features are evaluated sep-
arately and according to the operational needs enforced by the scheduler. Additionally, features
are preferentially selected to cause the cascade to stop processing by collapsing the probability
distribution to a degenerate probability distribution. These features are more naturally thought
of as weak classi�ers, similar those that make up ordinary cascade classi�ers except that they
have as many as three outputs. The classi�ers have the property that they may either have a
near-zero false-reject rate and a high defer rate, or a near-zero false-accept rate with a high
defer rate. They may also have neither or both of these attributes. In any case, the probabilistic
interpretation of defer must be well characterized, unlike in the ordinary cascade where it need
not be known.

In this section I have introduced symmetric cascades, a generalization of cascade classi�ers
that can stop processing on both accept and reject outcomes. I described how to implement sym-
metric cascades within the propagator framework, and how their use can lead to new e�ciency
and adaptability to varying operating constraints. I explained how symmetric cascades can be
couched as instances of naive Bayes classi�ers, and can therefore be learned from training data.
In the next section I describe a practical application of symmetric cascades in object tracking.

67



Implementation details

Applying symmetric cascades to object tracking The speci�c object-tracking problem of
interest is illustrated in Figure 25. Foreground labeling produces a foreground mask for each
frame in a video. Each set of connected components of the foreground mask, called a blob from
here on, corresponds to one or more objects in the observed scene. The goal is to link together
blobs that correspond to the same object or set of objects into tracks, and to discard blobs corre-
sponding to misclassi�ed background, or segmentation anomalies.

(a) Foreground composite (b) Foreground blobs

Figure 25: Raw input to the tracker
The time series visualized at 10-frame intervals in (a) is shown cast in its lowest-level representation in
(b). Each foreground segment, or blob, is initially assigned a random unique identi�er, represented by the
color of (b). The tracking program must link the blobs representing the same object together, across the
space and time coordinates.

This framing of the tracking problem is a simpli�ed version of the tracking that humans
easily perform. We do not typically become confused about object identity when objects partially
occlude each other or move in close proximity to one another, but the system is not required to
make sense of such scenarios beyond distinguishing tracks of the individual objects from tracks
of the segments formed by groups of partially-occluding or nearby objects.

The system builds up consistent tracks of objects by proposing candidate pairs of over-segmented
tracks that might correspond to the same object, and then vetting those pairs using a symmetric
cascade. Figure 26 depicts the merging process for a track of a pedestrian walking towards a
partial occlusion boundary. Each binary merge in the tree corresponds to the decision made by
a symmetric cascade element. The decisions are recorded in the track’s Support data structure,
from which Figure 26 was generated.

Proposals are generated when a pair of tracks is nearby in space-time volume. The proposal
procedure considers the longest in the current list of tracks �rst (called the seed track). For
each seed track, the process builds a list of tracks that occur during overlapping time segments.
Only overlapping tracks that have all of their blob centroids within a blob-distance threshold of
the centroids of the seed track are considered. To account for small time discrepancies caused
by short-duration occlusions and foreground-segmentation anomalies, the system interpolates
centroids and areas over a window of 5 frames. The blob distance dB between two real or inter-
polated blobs a and b with centroids ca and cb, respectively, and areas Aa and Ab, respectively, is

68



Implementation details

as follows:

dB(a, b) ≡
|ca − cb|√
Aa + Ab

(5)

That is, the distance between the centroids is normalized by area. Note that this is not a metric
because it does not satisfy the triangle inequality. It is nevertheless a useful way to measure
meaningful proximity between blobs: in practice, large or near-�eld objects produce more distant
isolated patches of foreground than do small or distant objects. This blob distance is a reasonable
�rst-pass cost function for eliminating pairs of blobs that should not be considered for merger,
allowing the number of merge proposals to be closer to linear rather than quadratic in the number
of tracks. Because the number of tracks scales according to the total length of the video, linearity
in the number of tracks is necessary for real-time performance. This implementation does not
run in real time, but because real-time performance is an essential aspect of vision systems, there
must be hope of making it linear.

The propagators in the symmetric cascade then use several features to decide whether tracks
proposed for merger should actually merge. All are engineered, heuristically-motivated features,
and augmenting this strategy with feature learning is an area for future development. The fea-
tures fall into three categories: geometric features, motion features, and appearance features.

When computing motion features, the cascade must take into account that the optical �ow
measurements are noisy and unreliable. The only motion feature used is a time-averaged eu-
clidean distance between average optical �ow per blob. For every pair of (actual or interpolated)
blobs in the tracks considered for merge, a cascade element computes the euclidean distance be-
tween the vector resulting from integrating optical �ow over all of the area contained in each
blob. The time averaging uses a window of �xed length (30 frames, which amount to 1 second
of video). The result is a weak measure of similarity that is fairly robust to noise, taking into
account direction and magnitude of the motion of blobs.

The only appearance feature used in the implementation is a color histogram in HSL color
space, with 32 histogram bins for hue and 16 bins each for saturation and lightness. All foreground
area in each track contributes equally to the histograms. To compare two histograms, the program
normalizes each histogram and then computes the sum over the pair’s bin-wise minimum.

The geometric features used to vet track mergers are the total number of connected fore-
ground components in each blob, Nc, the ratio between the minimum and maximum blob dis-
tance between the two tracks, Rb, and the maximum contour separation in blob distance, DM .
Penalizing high values of Nc prevents a snowball e�ect arising from merging too many spatially
distant blobs from dominating the merge process. Rb compares the maximum and minimum val-
ues of dB over the frame range of the tracks. Too high a value suggests that the blobs are moving
independently of one another and should not be merged. To calculate DM , a variant of the blob
distance is used that measures from edge points of blob contours rather than blob centroids. DM

is the largest (area-normalized) minimum distance between boundaries of any two blobs in the
proposed merged track.

69



Implementation details

DM ≡ max
B1,B2

(
min

C1∈B1,C2∈B2

dm(C1, C2, B1, B2)

)
(6)

Here, C1 and C2 are contours: sets of points that de�ne the boundaries of the connected compo-
nents comprising blobs B1 and B2, respectively. DM is de�ned to be the maximum value over
the proposed merged track of the minimum dm value of any one of the pairs of blobs consid-
ered in the merger. The function dm, in turn, is an area-normalized distance but instead of being
computed between centroids of blobs it is computed between the closest points on contours:

dm(C1, C2, B1, B2) ≡
minp1∈C1,p2∈C2 |p1 − p2|√

AB1 + AB2

(7)

The symbols AB1 and AB2 represent the areas of two blobs considered for merger. Overall, the
feature DM is the maximum, over each pair of blobs B1, B2 in the proposed merged track, of the
minimum area-normalized distance between a point on some contour C1 ∈ B1, and a point on
some other contour C2 ∈ B2. Preventing mergers of tracks with too large DM prevents merging
blobs whose centroids appear close, but whose individual foreground contours are all distant.

The �nal procedural detail required to produce bounding boxes for the tracked objects is that
the bounding boxes must be smoothed in order to exhibit enough regularity to be used for reliable
geometric measurements. An order-2 Butterworth �lter with a cuto� frequency of 0.05 times the
Nyquist rate (equivalent to 0.75 Hz) provides adequate smoothing when applied independently
to the x and w bounding-rectangle parameters. The y and h parameters use a �lter with a lower
frequency cuto� of 0.17 Hz. The �lters are applied forward and backward to each track, ensuring
no phase shift. This non-causal �ltering is one of many smoothing strategies that could be used,
so it does not present an insurmountable obstacle to real-time performance.

70



Implementation details

Figure 26: Output of track merging via symmetric cascade
Each merge decision in the binary tree is attributed to the stage of the symmetric cascade that caused
the merge. All decisions are derived from the track’s support data structure. Dark patches represent
foreground objects that have been merged at that point in the tree, and light patches represent all other
non-merged tracks. The tree represents a complete merge process, from short over-segmented tracks
produced by simple rules to the �nal track. All leaves represent unique tracks, even though some of the
di�erences have too small area to be visible in the format used for display.

Locating occlusion boundaries By noting the blobs that form endpoints of tracks, it is pos-
sible to accumulate information about where objects appear and disappear. Such information,
which has semantic interpretation as source or sink loci of tracks, initiates the process of learn-
ing about background scene geometry from object tracks, and then propagating that knowledge
back to the foreground. This process begins to expose the power and expressiveness of propa-
gator representations for perception beyond purely mechanical bene�ts such as modularity and
ease of parallelization. The existence of source and sink loci can be determined from evidence
in the form of tracks, but it can also be used to interpret the tracks themselves. Where should
this mutually-reinforcing process begin, and how can we ensure that it is not based on circular
reasoning? How can external information, of the type that story-understanding systems or ad-
ditional modes of perception can provide, integrate seamlessly into this process? I address these

71



Implementation details

questions in this section.
Cells maintain information about source and sink loci and occlusion boundaries. The cell of

class SourceSinkLoci holds a set of bounding rectangles formed by aggregating the �rst and last
frames in tracks. SourceSinkLoci cells accumulate these bounding boxes.

Additional cells build up a lower-level type of occlusion information. Whereas SourceSinkLoci
represent places where moving objects are likely to appear and disappear, they do not contain
�ne-grained spatial locations of occlusion boundaries, and they cannot represent small occluders
such as the tree trunk in Figure 25. Cells of class HistMap hold, for every pixel location in an
image, one of the following types of histograms:

• HSL color histograms of all blobs that have had an edge (boundary pixel) at the given
location, accumulated over all time, with 32 hue bins and 16 bins each for lightness and
saturation.

• Optical �ow direction histograms, containing 8 direction bins. These histograms accumu-
late the averaged optical �ow vectors for blobs. The histograms corresponding to the pixels
at the edge of blob contours are updated with the averaged optical �ow of the blobs.

• Edge-present frame-count histograms, in which the bin accumulators at each pixel loca-
tion are updated whenever the corresponding pixel remains on the edge of a blob for a
certain number of frames. The 6 bins represent approximately exponentially increasing
frame counts: 4-7 frames, 8-15 frames, 16-31 frames, 32-63 frames, 64-127 frames, and a
catch-all bin for 128+ frames.

Figure 27 depicts the location-mapped histograms of a HistMap cell that contains edge-present
frame-count histograms. Figure 28 depicts optical �ow and HSL histograms, which are also stored
in HistMap cells at every pixel location. Additionally there are ListMap cells, which map arbitrary
lists to pixel locations. The two types put to use are:

• Lists of HSL histograms, for each blob that has ever had an edge at the given point. Un-
like the histograms in the histogram cells, these histogram accumulators are never again
modi�ed after they are stored.

• Lists of all distinct frame sequence numbers that a given pixel has been included in a blob
edge.

All together, the three types of histogram cell and the two types of list cell provide all the
information needed to derive a pixel-level map of occluders. To build intuition for why this works,
suppose there is a region of the image that often experiences poor foreground segmentation, such
as a region containing movable vegetation. The edge duration histograms may accumulate large
values here, but the overall color histogram and list of color histograms will all contain similar
values corresponding to the colors of the moving vegetation. At edges of occluders of interest
(places where pedestrians appear and disappear in the scene), there is more variation in the color
histograms, and more concentrated peaks in the duration histograms. Loci of frequent occlusions
of interest will have sharp spatial peaks as depicted in Figure 27.

72



Implementation details

Figure 27: Edge-present frame-count histogram composite
Colors represent histogram bin and color intensities represent histogram value in this composite of an
edge-present frame-count histogram generated from approximately 20 minutes of processed video. In
this representation, which is used by HistMap cells, histogram bins are incremented whenever the corre-
sponding pixel location contains an edge for each of the following ranges of consecutive frames (from top
to bottom) 4-7, 8-15, 16-31, 32-63, 64-127, 128-∞. The strip at the bottom is a layered composite of the bin
images.

73



Implementation details

(a) Foreground region (b) Optical �ow orientation histogram

(c) HSL histogram cross-sections

Figure 28: Optical �ow and color histograms
The representative example foreground blob (a) produces the optical �ow histogram (b) with 8 direction
bins and the color histogram shown in three projections (c). The HSL histogram has 32 equally-spaced hue
quanta and 16 quanta each for lightness and saturation (for a total of 8192 bins). Each histogram is stored
at every pixel location in a dense HistMap cell, analogous to the way edge-present frame-count histograms
are stored (as depicted in Figure 27).

Propagating geometric information The vertical orientation of the camera in this setup
makes it easy to estimate the distance from focal plane, Z , given the height in pixels and the
height in meters of an object known to be standing vertically. Furthermore in many environ-
ments such as the one used in this example, it is reasonable to approximate the ground as planar

74



Implementation details

or piecewise planar. Applying least squares optimization assuming that every pedestrian is of
average adult height �nds the approximate ground plane, as shown in Figure 29.

(a) Pedestrians and ground plane (b) Ground plane error

Figure 29: Output of least squares estimation of the ground plane
Seventy pedestrian tracks of at least 150 frames each provide the image heights and bounding boxes used
to estimate the ground plane, shown in green in (a) with overlaid track samples from many tracks. Grid
units are nominally 1 meter, and the grid is shown only where supported by measurements. Pedestrian
heights are assumed to be 1.68m, leading to the situation (b) in which people taller than average appear to
�oat above the estimated ground plane.

The program can do better by jointly optimizing the parameters of the ground plane and the
pedestrian heights. This optimization makes use of the observation that a person’s measured
height doesn’t change by very much as the person walks, in order to link together the real-
world heights of the many bounding boxes measured from the same pedestrian track. In this
simple example scenario, it is straightforward to apply global optimization to a cost function that
penalizes deviation in height from the national average and distance of the ground-support points
from the estimated ground plane. This solution would work in the case of estimating pedestrian
heights and ground-plane parameters, but it does not naturally scale to large complex problems
with more unusual types of constraints and many components and variables.

Instead of explicit global optimization, the propagator methodology seeks a type of implicit
local optimization that arises naturally from the connections and constraints in the network.
One way to do this in the example is to have separate cost functions for the ground plane pa-
rameters and for the individual pedestrian heights. Then the propagators perform a relaxation
algorithm: alternating between estimating the ground-plane parameters holding the pedestrian
heights �xed, and the pedestrian heights holding the ground-plane parameters �xed. Figure 30
depicts the results of that relaxation.

75



Implementation details

(a) Pedestrians and relaxed ground plane (b) Ground plane error resolved

Figure 30: Output of propagator relaxation of the ground plane
After applying a relaxation propagator network, variables in the system re�ect the constraint that pedes-
trians’ feet rest on the ground. The relaxation improves the ground-plane solution, and it better estimates
the height of each individual pedestrian.

In order to implement relaxation while preserving a type of monotonicity, the implementation
relies on a type of cell that holds a collection of values. Cells store every update that does not
have identical support as one of its members, and ideally never discard any values. A value in
the example case refers to an instance of ground-plane parameters or an instance of pedestrian
height assignments. An update with a di�erent value but the same support as an existing member
of the cell is an error condition. A short-circuit mechanism prevents propagators from redoing
work that has already been done, because the generated support tree for the value that would
result from that work would already be present in the target cell. In the case of the relaxation
algorithm, propagation stops when convergence occurs.

To take things a step further, propagation can incorporate the locations of source/sink loci
of tracks. The network infers locations of occluders from accumulated histograms of foreground
regions like those depicted in Figures 27 and 28 as well as from statistics of bounding boxes at
the beginnings and ends of tracks in time. The results are shown in Figure 31. When a pedestrian
appears from behind an occluder of known Z position in the scene, the occluder sets a lower
bound on the appearing person’s height. Observations of foreground objects both occluding and
becoming occluded by a background object of knownZ position can bound the foreground object
height both from above and from below.

76



Implementation details

Figure 31: Locations of occluders
Intensity of blue shading corresponds to number of tracks observed to appear or disappear near the indi-
cated region. The red region marks the occlusion boundary having the the highest con�dence from among
those found in the scene. The Z coordinate of the base of the occluding object is manually annotated with
ground truth measured using stereo disparity.

One way to use this type of occlusion constraint is to build up evidence for the distance of
the occluder and apply relaxation as in the ground-plane example. Another way is to use known
measurements of the occluder’s distance to make inferences about the heights of pedestrians
that interact with the occluder. In this case, setting the occluder’s height has rippling e�ects: the
pedestrians that are seen to interact with the occluder have bounds placed on their heights. The
new bound assignments cause automatic restarting the ground-plane relaxation process and solv-
ing for new plane coe�cients and new heights for the other pedestrians. A propagator network
implementing that process is illustrated in Figure 32.

77



Implementation details

Figure 32: Top-down propagator network
The portion of the propagator network that can interface with a high-level system accepts Z coordinate
values for objects’ occlusion boundaries that other parts of the propagator system have detected. Setting
the Z coordinate of the obstacle a�ects the values of other cells in the system by causing a relaxation
algorithm to update pedestrian heights and ground-plane parameters.

Applying this network by assigning the value of 24.4 meters to the Z coordinate of the oc-
cluder shown in red in Figure 31 has little e�ect on the ground plane solution, using the small
sample of 70 successfully tracked pedestrians from the approximately 20 minutes of processed
video. Out of the 23 tracks that start or end at the occluding wall, none undergo a change in
height due to the updated lower bound; their heights had already been relaxed to values above
that imposed by the constraint. Of the 36 tracks that pass in front of the occluding wall, exactly
one undergoes a decrease in height due to the updated upper bound, from 1.64 meters to 1.60
meters. Samples from the a�ected track are shown in Figure 33. From this image it is clear that
the track should not have been constrained by the geometry update; its small appearance in the
vicinity of the occluder is due to background segmentation failure. The good news in this case is
that the change in height has negligible e�ect on the ground plane parameters.

78



Discussion

Figure 33: Track a�ected by propagation
The only track from a sample of 70 tracks that is a�ected by propagation of the labeled occlusion bound-
ary exhibits segmentation errors. All other tracks are successfully determined to be una�ected by the
constraint imposed by the occlusion-boundary distance information.

This process has implications for connecting story understanding systems to perception sys-
tems. Suppose that a story understanding system has the knowledge the Collier Memorial statue
stands 3.0 meters tall at its eastern edge, and that some vision component, not modeled here, can
recognize the eastern edge of the statue. Then the propagator system can infer the Z coordi-
nate of the edge of the statue, propagate the knowledge to pedestrians occluded by or occluding
that edge and then to the ground plane, which has potential to in�uence the way other scene
objects are interpreted. The implications extend to hypothetical reasoning as well: the story un-
derstanding system can issue a hypothetical statement to the propagator network and measure
its propagated e�ects against known quantities. Because saving and restoring the entire state of
the perceptual network in order to test a hypothesis is impractical, the propagator architecture
can relatively e�ciently prune out all inferences that depend on the hypothetical statement by
inspecting supports, and, due to the monotonicity property, guarantee that no other values could
have been polluted by the hypothesis testing process.

4.4 Discussion
The initial steps toward building a propagator-based vision system and the qualitative results
obtained from that system show promise, and invite further development. The initial implemen-
tation I described here demonstrates how top-down in�uence, in the form of assertions about
object dimensions and locations, can in�uence the perceptual processing of a scene and result in
deductions about the dimensions and locations of other objects in the scene, based on the way that
objects interact with each other. The implementation realizes one of the ways that a high-level
cognitive process can re�ect its knowledge back onto its perceptual apparatus to learn some-
thing new: by forming a hypothesis, and determining if the propagated e�ects of that hypothesis
corroborate or contradict other knowledge that the high-level process has. This represents sig-
ni�cant evidence in favor of the alignment hypothesis motivated by observations about natural
vision systems in Chapter 1. In the implementation I described here, externally supplied mea-
surements, which serve as a stand-in for expectations about the world arising from story-level
processing, re�ect back onto an intermediate-level representation in which tracked objects are
represented by features like contours, color histograms and bounding boxes, and as a result of
this re�ection, the system is able to re�ne both the high- and intermediate-level descriptions and
provide justi�cation for the re�nements. The alignment hypothesis also calls for pervasive align-

79



Discussion

ment, that is, it is predicated on alignment being ubiquitous at all levels, not just at the interaction
between high- and mid-level representations as in this implementation.

The di�culty in implementing low-level alignment in my e�ort to build a vision system using
propagators sheds light on some obstacles in the way of applying the full power of the propagator
architecture in a vision context. In order to test the alignment hypothesis, it is necessary to align
at all levels: to propagate high-level knowledge through intermediate representations and down
to low-level representations. The propagator architecture was an appealing choice of mechanism
for pervasive alignment, because its graphs of components that communicate through shared
state, combined with its ability to make partial solutions available quickly, are both desirable
attributes for a system that aims for pervasive alignment of partial information across sensory
modalities working toward a common perceptual goal. Having a network of components com-
municate through state shared only with neighbors is appealing because it permits pervasive
alignment while only requiring system designers to build local interfaces between components.
Early propagation of partial information allows maximum bene�t from alignment: a component
can, for example, opportunistically reduce the domain of a state variable it shares with a neighbor-
ing component as that neighboring component continues an ongoing process, thereby potentially
ruling out alternatives before signi�cant work has been invested. Despite such appealing proper-
ties, I believe that the propagator architecture and its basic components as originally speci�ed do
not constitute a complete framework for implementing alignment-based vision systems. I present
here my assessment of the main obstacles to development of vision systems with propagators,
followed by my thoughts on how to overcome the obstacles.

Re�ecting on my work with propagators reveals two main areas of di�culty: a technical type
and a conceptual type which has several subcategories. The technical type is not a fundamental
limitation but it does present a formidable engineering challenge. Because propagator frame-
works are relatively new and under-explored, there are very few existing primitives available
with which to build propagator-based vision systems. There is, however, an extensive body of
work on computer vision that continues to grow at a rapidly accelerating pace. A daunting task
thus confronts those who venture to rebuild the basic machinery that has driven recent progress
in computer vision, in such a way that it can take full advantage of propagation. Even the simple
example presented in this chapter contains many components that derive from software libraries,
which cannot bene�t directly from propagation without substantial design e�ort. For example,
consider optical-�ow calculation. It is surely feasible and likely rewarding to incorporate top-
down information in optical-�ow calculation. State-of-the-art optical �ow methods already use
high-level image features (Revaud et al. [2015]) as well as deep feature learning (Weinzaepfel et al.
[2013]) to produce ever more accurate optical �ow vector �elds. Incorporating top-down infor-
mation, such as classes of objects like pedestrians, or likely activities such as walking, may there-
fore have tremendous potential to improve upon existing optical �ow methods. Implementing
an optical �ow calculator that can accept top-down information, however, would be a substantial
undertaking worthy of its own dedicated research program. The optical �ow library provided by
Adarve and Mahony [2016] that I used in my implementation consists at the time of this writing
of 25,782 source lines written in a combination of C++, CUDA C++, ANSI C, and Python. Much
of the project relies on the the authors’ knowledge of and careful attention to the architectural
minutiae of a certain brand of GPU, but even neglecting the special hardware expertise required
by the project, a Basic COCOMO model (Person-Months = 2.4N1.05

KSLOC) (Boehm et al. [2000]) es-

80



Discussion

timates that the project required over 6 person-years of e�ort2. Technical problems abound of a
magnitude equal to or greater than that of building a propagation-enabled optical �ow calculator,
and so any strategy requiring reimplementation or deep modi�cation is clearly infeasible. In or-
der to build propagator systems that perform on par with the state of the art, therefore, it will be
very important in future e�orts to invent ways to include and combine many opaque techniques
in propagator architectures.

I identi�ed 4 categories of conceptual obstacles that I believe are fundamental to the propa-
gator architecture that I used in my work when it is applied to low-level visual processes. It is
useful to organize the obstacles this way, because doing so has helped to circumscribe the aspects
of the propagator architecture that appear problematic in order to retain as much of the architec-
ture’s power as possible in the work that is the subject of Chapter 5. The obstacles discussed here
apply to the propagator architecture of Radul [2009] upon which I based my work, and through-
out the remaining discussion I use propagator architecture to refer to my implementation based
on Radul’s groundwork. Although generalizations and variants of the architecture exist which
are una�ected by these particular obstacles, it is important to note that the obstacles arise from
several of the great strengths of this chosen architecture, which I identi�ed in Chapters 1 and 3
and which led me to use the architecture in my work. These obstacles do not detract from those
strengths under many circumstances; only under some circumstances pertaining to low-level vi-
sion. Careful review and consideration of the obstacles will enable, in future e�orts, uni�cation
of the original architecture with its variants that are unencumbered by the obstacles. Such uni-
�cation will allow high-level propagation systems like the one that is the subject of this chapter
to work with systems that appropriately model low-level vision. The 4 obstacles are as follows:

1. Scarcity of strong constraints

Scarcity of strong constraints refers to an apparent scarcity of constraints of the type that
the propagator architecture can make use of, in problems of interest in low-level vision.

2. Brittleness of logical absolutes

Brittleness of logical absolutes is the problem that, even when strong constraints of the
type that propagation can use are present, they tend not to provide much in the way of
actionable information to the inherently goal-directed processes of vision.

3. Incorrigibility

Incorrigibility refers to the inability of propagation to be corrected once it has made its
decision, which leads to certain problems that are not present in systems that can revise
decisions.

4. Problems of scale

The problems of scale are that primitives in the propagator architecture su�er a substantial
reduction in e�cacy when they are forced to cope with high-dimensional data.

I discuss each of these issues, and conclude with a discussion of how to address them while
preserving some of the unique bene�ts of the propagator architecture, in order to come closer to
a vision system that realizes the goal of pervasive alignment.

2Estimate generated using David A. Wheeler’s ‘SLOCCount’.

81



Discussion

4.4.1 Scarcity of strong constraints

When strong constraints are scarce, it is unproductive to propagate information by domain re-
duction. In the problem of map coloring, for example, propagation alone cannot arrive at a col-
oring that guarantees that no adjacent regions on a map share a color. Map coloring is a conve-
nient analogy in this context because, like vision, map coloring is a problem without a uniquely-
determined solution. Map coloring is also goal-directed: any coloring satisfying the constraints
will do. Analogously, vision systems exist to serve the needs of survival and higher cognitive
function, not to �nd all possible interpretations of their input or even globally-consistent inter-
pretations. The propagator architecture is well-suited to exploiting strong, logical constraints. It
seems to me that weak constraints, of the type that can be expressed as probability distributions,
abound in low-level vision, but strong constraints are very scarce. In Section 4.3.3 I described
ways to treat soft constraints like hard constraints: by thresholding, and by using cells that rep-
resent changing beliefs that nevertheless only accumulate information, either by accumulating
factors of a distribution’s parameters, as in the symmetric cascade, or by accumulating discrete
examples in growing histograms. While these methods work decently at the intermediate levels
of representation used in object tracking, it is problematic to apply the methods at the low level
of, for example, background color modeling, where the combinatorics are unfavorable. Strong
constraints in low-level vision thus seem too scarce to be of any use.

4.4.2 Brittleness of logical absolutes

Separate from the problem of �nding strong constraints is the problem of learning something
valuable from propagating those constraints. Reasoning in terms of logical absolutes is conducive
to building propagator machinery with useful guarantees, such as idempotence. Logical absolutes
also enable powerful ideas: dependency-directed backtracking (Stallman and Sussman [1977],
Zabih [1988]) forms nogood sets based on observed logical inconsistency, and as a result it can
e�ciently prune search graphs. Without a strong notion of impossibility, dependency-directed
backtracking would be reduced to, at best, a heuristic search e.g. Monte Carlo tree search. Despite
its irrefutable superiority in many inference scenarios, reasoning in terms of logical absolutes also
has an inescapable brittleness which, it seems to me, precludes its productive use in low-level
vision. Essential measures of optimality may be overshadowed by logical possibility, so that a
reasoning framework that must retain all possibilities can make no progress. Whenever absolute
impossibility can be found in the noisy and imprecise world, it is isolated from nearly all variables
on which it could have any practical e�ect.

The issue at hand when considering the brittleness of logical absolutes is not whether ob-
servations and inferences about the visual world can be directly represented by logical relations.
A large body of work from AI’s early history demonstrates the infeasibility of that approach. I
considered instead whether the primitives of the propagator architecture, which operate in the
realm of logic, could be applied to model and productively reason about empirically-measured
probability distributions. One way of doing this is to have cells that store information about the
parameters of parameterized probability distributions3.

3Another way to accommodate probabilistic weak constraints in the propagator framework is to accumulate
individual samples in dedicated cells. This way shows promise in reducing brittleness and in resolving other problems
as well. I discuss it further in Section 4.4.5.

82



Discussion

For example, consider what it would take to overload the sum propagator to operate on prob-
ability distributions. It is useful to think about the distinction between sample space and distribu-
tion space. Suppose two cells store information about independent normally-distributed random
variables X and Y . That is, one cell stores the respective ranges of values that µX and σ2

X may
hold, and the other cell stores the ranges of µY and σ2

Y . Suppose we are interested in the sum,
Z = X+Y . In sample space, the sum operates on x, y, and z, samples drawn respectively from $X,
Y,$ and Z . The familiar sum relation holds, and given interval constraints on any two of the vari-
ables the sum can uniquely determine the interval constraints on the third. In distribution space,
we are propagating information about the parameters of the distributions of $X, Y,$ and Z . To do
this we need additional knowledge of dependence structure. Given the dependence structure and
other particulars of of this example, namely that X ⊥ Y , X ∼ N (µX , σX), Y ∼ N (µY , σY ), and
Z = X + Y , our distribution-space-overloaded sum should propagate according to the relations
µZ = µX + µY and σ2

Z = σ2
X + σ2

Y .
Propagation of distribution parameters in isolation may prove useful for describing complex

probability distributions, but this is only part of the problem we need to solve. The good news is
that when we know not only the conditional independence structure of a graph of interconnected
random variables, but we additionally have detailed knowledge of the computational dependencies
of the internal variables of the distribution represented by the graph, many possibilities open
up for reasoning in terms of the probability distributions represented by programs with non-
deterministic elements. In this way, such distribution-space propagation is similar to probabilistic
programming (Goodman et al. [2012]). Unfortunately, to apply distribution-space propagation
and its useful generalization capacity in vision problems of interest, there needs to be a way to
update the distribution-space parameters from sample-space measurements. There seems to me
to be no good way to do this within the propagator framework, as no amount of sample data can
ever provide incontrovertible evidence to support pruning the domain of distribution parameters
such as the means and variances in the Z = X + Y example. In general, it is impossible to
guarantee that the interval bounds of the distribution parameters that we estimate from an open-
ended collection of samples would change monotonically. If the system cannot move from sample
space to distribution space it cannot easily generalize and it is stuck reasoning in terms of an ever-
growing set of speci�cs. The best hope for resolving this issue within a strictly-logical framework
is to generalize over �nite batches of examples at a time. I discuss this strategy in Section 4.4.5.

4.4.3 Incorrigibility

Saying that propagators sometimes behave incorrigibly calls attention to a negative aspect of one
of their greatest strengths: monotonicity. Monotonicity empowers propagator systems in several
ways. It allows propagators to begin making use of each other’s work during ongoing computa-
tions; they can rely on the partial results because of the guarantee that change cannot be undone.
It serves as a crucial building block of great properties for networks to have, such as conver-
gence guarantees. Unfortunately monotonicity also means that propagator networks cannot be
corrected without retraction of premises, which su�ers from unfavorable combinatorics in many
problems of interest in low-level vision. Truth Maintenance Systems (TMS) (McAllester [1978])
allow propagator networks to identify and reason about con�icting premises, but in a TMS con-
�ict is absolute; degrees of con�ict cannot be represented in terms of a continuously-varying cost
function. Incorrigibility makes it cumbersome at best to implement relaxation algorithms in the

83



Discussion

propagator architecture, especially the type of relaxation algorithm in which the cost of violated
constraints is reduced by repeated local adjustments. Having identi�ed relaxation algorithms as
a crucial family of algorithms in Chapter 1, I believe incorrigibility is a signi�cant obstacle that
needs to be addressed.

4.4.4 Problems of scale

Certain foundational components of the propagator architecture used in this work make heavy
use of interval arithmetic. As a result, the components su�er from precipitous degradation in
their ability to propagate domain reductions as the dimensionality of their input-output space
increases. To see why, �rst consider the motivating thought experiment used by Sussman and
Radul [2009]: measuring the height of a building using a barometer. In their thought experiment,
the authors considered several ways to obtain measurements: throw the barometer o� the roof
of the building and time its fall, compare the shadow cast by the barometer to that cast by the
building, and bribe the building superintendent with the barometer to obtain an estimate of the
building’s height. The authors implement each of these methods in terms of a small number of
primitive propagators, for example quadratic, product, sum, and a handful of other relations. I
focus on the sum relation, and argue that the outcome applies to other propagator primitives as
well.

+

I
1

I
2

I
S

L
1

L
2

L
S

(a) 3-way sum propagator

Σ

I
1

I
2 I

S

L
1

L
2

L
S

I
N

..
.

L
N

.. .

(b) Multi-way sum propagator

Figure 34: A three-way and multi-way sum propagator

sum propagators connect to two (a) or more (b) summands, and their respective totals. If the summands
are unbroken intervals, then the total IS is also an unbroken interval, and its length LS is equal to the sum
of the lengths of the summand intervals, I1...IN . The thresholds on the lengths of the sub-intervals of IS
in which propagation can occur lead to unfavorable scalability issues.

The barometer example makes use of a sum propagator like that depicted in Figure 34a, with
three connections: two summands and a total. Suppose that such a 3-way sum has its summands
connected to two cells each containing the interval [0, 1]. The cell connected to the total contains
the value [0, 2]. This is a stable con�guration; no pruning of the intervals can be performed based
on the relation enforced by the sum propagator. Now consider what happens when the total is
updated, that is, pruned by way of some external update, so that it contains the interval [1, 2]
instead of the previously-held [0, 2]. Note that the sum propagator can do nothing to change
the domains of either summand. A value of 1, the lower bound of the new total interval, can

84



Discussion

be realized if one summand has value 0 and the other has value 1. Now suppose we further
restrict the total cell, to contain the interval [1 + ε, 2]. Fortunately, now the sum propagator can
do something: it may update the domains of each summand to hold the interval [ε, 1]. In other
words, in order to get propagation in this example by restricting the total to be no less than some
value TH , it must be the case that TH > 1. If we instead restrict the total to be no greater than
some value TL, then propagation can only happen when TL < 1. Another way to think about
this example is that if we pick a random value in the interval [0, 2] and then decide at random to
eliminate values less than the chosen value or higher than it, the sum propagator will get to do
some propagation half of the time.

Being able to propagate some information half of the time might not seem that bad. Now
consider what happens in the case depicted in Figure 34b, in which the sum propagator has N
summands and a single total. Assume that the summands and total are all �nite unbroken inter-
vals of non-zero length; this simplifying assumption doesn’t change the implications to scalabil-
ity. Likewise assume that, as in the last example, the system starts in a steady state, in which the
total interval is constructed solely based on the information supplied by the summand intervals.
There are N summand intervals Ij , each described by the following bounds:

Ij ≡ [lj, hj] (8)

That is, lj and hj are the respective lower and upper endpoints of the summand interval Ij .
Let Lj be the length of the summand interval Ij :

Lj ≡ hj − lj (9)

And let the intervals be listed in order of increasing length, that is:

L1 ≤ L2 ≤ ... ≤ LN−1 ≤ LN (10)

The total interval, IS , that can be inferred directly from all summand intervals is:

IS ≡ [lS, hS], lS =
N∑
j=1

lj, hS =
N∑
j=1

hj (11)

And the length of the total interval is LS , which is the sum of all the lengths of the summand
intervals:

LS =
N∑
j=1

Lj (12)

85



Discussion

With these de�nitions, we can now answer questions about when pruning of the summand
intervals can happen by propagation of an update to the total interval. Speci�cally, suppose
the total interval IS is shortened by picking a random value from a uniform distribution over
the interval, separating the interval at the randomly chosen value into two new intervals (each
inclusive of endpoints), and retaining one of the two resulting intervals at random. The question
to answer is: what proportion of the time would any propagation happen? That is, when would
any of the summands’ intervals change? There are other interesting questions to ask as well,
such as how much total length do we expect to be trimmed from all of the summand intervals, or
which intervals become trimmed under which conditions. The answers to those questions, along
with detailed supporting analysis for the results that follow, are straightforward but omitted for
clarity. The lower bound of any summand interval cannot increase unless the lower bound of the
total exceeds a threshold TH :

TH = lS +
N−1∑
j=1

Lj = hS − LN (13)

No lower bound of a summand interval can increase before the lower bound of the largest
summand interval increases4. The lower bound of that largest summand interval cannot increase
until the length of the total interval is forced by the rising lower bound to be less than the length
of the largest summand interval. In an analogous way, the upper bound of any summand interval
cannot decrease until the upper bound of the total interval falls below a threshold TL, which must
be as follows:

TL = lS + LN (14)

The probability pT of any propagation occurring given the previously stated condition, a
random split of the sum interval, is then:

pT =
LN

LS

=
LN∑N
j=1 Lj

(15)

If the length of the largest interval stays �xed this indicates that pT is strictly decreasing as the
number of inputs grows. In the common scenario where the starting domain of all summands is
identical, this means that that pT , the probability that the sum propagator can do anything
at all in response to a domain reduction, is inversely proportional to the number of
inputs. This result is especially bad considering that a summation with thousands or millions of
inputs would not be out of the ordinary in a typical low-level vision problem; for a general sense

4The intuition follows from the fact that all summands contribute to the total in identical ways. If the largest
summand interval retains its entire capacity, we can always accomodate a small change in the total using a value in
the interval of this largest summand before we must resort to limiting another variable.

86



Discussion

of scale, an RGB video at 640x480 resolution and 30 frames per second contains about 27 million
individual measurements per second.

The problem comes from treating all of the summands independently of one another. This
hints at why the problem is not limited to sums. A product propagator is almost the same ma-
chine as a sum with log_exp propagators sitting between its cells and the rest of the network
(neglecting the 0 case). In fact any di�erentiable5 operation that has the property that it takes
N − 1 of its input/outputs to uniquely determine the last one has the scale problem I described.
It is not true that the constraint which causes no pruning in the propagator scenario conveys
no information. Figure 35 depicts where the information from such a constraint exists: in a hy-
perplane in the space of the summands, represented by the diagonal lines in the �gure. The
scalability problem can happen whenever the constraint conveys information that can only be
represented in some subspace of the inputs with dimensionality greater than 1. To �x the scal-
ability problem, suppose we introduce a new kind of cell to the propagator system that stores
constraints as manifolds in the input space. As it turns out, this new kind of cell would have no
trouble with the N -ary sum propagator. Any pruning of the total would result in some pruning
of the hypervolume represented by the summands.

y

x1 x2

y1

y2

x

y

x1 x2

y1

y2

x

y

x1 x2

y1

y2

x

Figure 35: A three-way sum propagator with a constraint on the total
As the value of the constraint C increases, nothing can be pruned until C surpasses y2+x1. The interval of
y cannot be pruned until C surpasses x2+y1. The gray part of the rectangle is invalid under the constraint.
The grayed regions along the axes can be eliminated by the sum propagator.

The surprise is that, with the addition of this new type of cell that represents constraints
as manifolds in high-dimensional space, the resulting hypothetical propagator network looks
conspicuously like a neural network. This is great news, because it hints at a way that a variant
of the propagator architecture can connect seamlessly with neural networks. I revisit this idea in
Chapter 5.

4.4.5 Where to go next

The approach I have taken to resolving the issues of scarcity of strong constraints, brittleness
of logical absolutes, incorrigibility, and problems of scale is to sacri�ce monotonicity and have
cells store values that can change. With this modi�cation, it is possible to adjust variables’ values
individually based on their contribution to the cost of a violated high-dimensional constraint.
Because this is how the weight variables in neural networks are trained, it can make the network

5Di�erentiability, along with the other property stated of not distinguishing between inputs, are su�cient criteria.
It seems plausible that more inclusive criteria exist.

87



Contributions

compatible with neural networks if they also have certain other properties, like di�erentiable op-
erations and cost functions. I revisit this in depth in Chapter 5. The sacri�ce of monotonicity pre-
cludes strictly logical inference about variables’ values based on the constraints; logic gives way
to optimization, and one or more cost functions must determine how to bring the variables into
alignment with the constraints. Perception problems typically have objectives that are di�cult
to optimize, which presents a signi�cant challenge. Other, more interesting challenges abound:
for example, as I discuss in Chapter 5, this marriage of propagator-like machinery with neural
networks enables a type of hypothesis testing that is not possible in ordinary neural networks.

An interesting direction to pursue in future work on applying the original monotonic propa-
gators framework to problems with a lot of data is to develop further the type of cell that accumu-
lates information by way of examples added to collections. This type of cell, which I used to store
information about occluders by representative examples as discussed in Section 4.3.3, manages
not to sacri�ce monotonicity and addresses the problem I introduced in the discussion about the
brittleness of logical absolutes: that it is problematic to estimate the parameters of probability
distributions from samples in a way that honors monotonicity. One way to interpret monotonic-
ity of information content is to use a type of cell that contains a growing set of representative
examples. For instance, one such cell could contain data points, and another cell could contain
statistics like means and variances of batches of data points from the �rst cell. An estimator
propagator sitting in between would measure statistics of batches from the data cell, and submit
updates to the statistics cell. The supported-by property of the statistics updates would derive
from the supported-by properties of each corresponding batch of data points. A sampler prop-
agator could watch for updates to the statistics cell, and submit samples from the corresponding
distribution (assuming known distribution type) to the data cell. The supported-by properties
would prevent echoing, that is, the undesirable situation where the estimator operates on the
output of the sampler.

Set membership is a logical constraint and so this arrangement doesn’t have to break the rules.
The advantage that monotonicity imparts is somewhat diminished from that of other logical
constraints; in this case it is relegated to controlling the �ow of information. Items already in a
set (as established by supported-by properties) need not be recomputed. This is a powerful idea,
though, because it allows the �ow of information to be determined by the needs of the problem
rather than explicitly by the programmer.

4.5 Contributions
My main contributions in this chapter are as follows.

• I implemented a propagator system that tracks pedestrians in a video from a stationary
camera, in order to demonstrate how to use information about the geometry of certain
objects and their motion to make inferences about geometry and motion of other objects.
The system shows one way in which alignment can be applied to a vision problem.

• I introduced the symmetric cascade, an inference method that bene�ts from the power of
propagation. The symmetric cascade is a general-purpose mechanism that can e�ciently
con�rm or invalidate hypotheses. It can be optimized to make situation-dependent trade-
o�s of accuracy for e�ciency, and it can be learned from training data.

88



Contributions

• I discussed four obstacles to development of low-level vision systems with propagators:
scarcity of strong constraints, brittleness of logical absolutes, incorrigibility, and problems
of scale. The discussion motivates the decision to remove the monotonicity property and
continue development with a modi�ed propagator architecture that is compatible with neu-
ral networks. Chapter 5 details that work.

89



5. Building Neural Networks for Alignment

5 Building Neural Networks for Alignment
In this chapter you learn about my steps toward alignment-driven neural network architectures.
A signi�cant outcome of the e�ort is that alignment architectures enable a neural network trained
for one task to accomplish another. As shown in Figure 36, the neural network trained to estimate
depth from a single image can also perform the related task of depth super-resolution, that is,
using an image to increase the level of detail in a supplied low-resolution depth map.

Figure 36: Dual-mode estimation neural network

The neural network architecture presented in this chapter learns to estimate depth from images (left). Its
design enables it to perform the task of depth super-resolution (right) without retraining.

5.1 Introduction
The central endeavor of my work is to build a perception system that exhibits pervasive, multi-
modal alignment. The system of propagators that is the subject of Chapter 4 demonstrates at a
high level how propagators can be applied to making inferences in a scene-understanding con-
text. As implemented, the system is limited to using propagators at a coarse level; the low-level
components of the system are external to the propagator architecture and therefore cannot bene-
�t from it directly. In order to take propagator systems in vision to the next level of performance
and robustness, it is necessary to build low-level components that can exploit the full power of the
propagator architecture. By allowing bidirectional information �ow to propagate farther down
in the representational hierarchy, the in�uence of environmental and multimodal constraints can
extend to the interpretation of low-level visual features.

In Section 4.4 I discussed several outcomes of that e�ort to build alignment systems with
propagators. One outcome was an observation that with modi�cation to support multidimen-
sional constraints, certain components of the propagator architecture begin to resemble units of
arti�cial neural networks. In this chapter I describe my steps toward building neural networks
that can serve as building blocks for robust multimodal perception systems.

It has become a fashion to begin machine-learning articles with ecstatic praise for deep neural
networks. Deep convolutional neural networks have become the staple of themodern computer vision
pipeline, have pushed performance to soaring heights on a broad array of problems, are extremely

90



Problem statement

versatile, driving unprecedented advances in segmentation, detection, recognition, localization. . . 6

Of course, these accolades are justi�ed in the sense that they consist solely of true statements.
I believe, though, that the explosive growth of this technology elicits forbearance as much as it
inspires respect and awe. Deep learning, as a methodology that is rapidly developing into a disci-
pline of its own, has largely cast aside one of the greatest promises of AI: to uncover the principles
underlying human intelligence. Calling back to the physics metaphor I cited in Section 1.3, deep
learning in its present state shows little hope of revealing anything as profound as the F = ma
of intelligence. As a discipline, deep learning is more concerned with replicating behavior than
accounting for it in any more abstract terms than the meager abstractions of statistics. The issue
that is the subject of Chapter 2, that deep neural nets rely upon features for classi�cation that
are often conspicuously irrelevant to a human understanding of the visual problem being solved,
points to a problem that should concern engineers and scientists alike.

Perseverance in seeking out the principles and computational imperatives of intelligence will
eventually outpace the bubble of enthusiasm over deep learning’s rapid overturning of present-
day AI benchmarks. Understanding intelligence’s underlying principles will be scienti�cally re-
warding and, I anticipate, necessary to overcome tomorrow’s engineering challenges. Just as
important to recognize is that the profound achievements of deep learning have secured its place
among the most valuable tools that we can apply in the endeavor to understand intelligence.
These motivations guide my work with deep neural networks and frame the work I describe in
this chapter. In the following sections, I introduce the depth estimation problem of interest. I
discuss related work on similar problems and point out di�erences in approach between exist-
ing work and my own contributions. I motivate and summarize the architectural details of my
network. I present experimental results and discuss opportunities for improvement.

5.2 Problem statement
To motivate development of neural network architectures for multimodal alignment, I focused
on the problem of predicting the distance from the focal plane (depth, when unambiguous) of
the physical surface that best corresponds to each pixel in a single RGB image. This problem �ts
well with the theme of geometric inference that motivated my work in Chapter 4, and has some
additional advantages:

1. Depth reconstruction from a single monocular image is underdetermined. Though the
problem is impossible to solve in the general case, humans easily identify the relative and
approximate depths of objects within an image, demonstrating that we must use context
and domain knowledge to solve this problem in practice.

2. Ground-truth depth values are easy to obtain from a wide variety of sensors. Publicly-
available datasets abound.

3. As a non-visual channel, depth maps are analogous to the information provided by an-
other sensory modality such as touch. Depth thus presents the opportunity to test the
multimodal aspect of the alignment hypothesis. Speci�cally, can a system learn a robust
visual representation by learning the cross-domain problem of estimating depth?

6Paraphrase comprised of excerpts from Donahue et al. [2016], Chen et al. [2014], Pathak et al. [2016], Shelhamer
et al. [2016], Girshick [2015], Sermanet et al. [2013].

91



Related work

4. Unlike many non-visual channels, depth maps conform conveniently to the shape of im-
ages, having depth values corresponding to pixel locations within an image. The fact that
depth maps are 2D maps with image correspondence is convenient for many reasons. Of
special interest here is that it makes them conducive to processing with convolutional neu-
ral networks.

5. Visual depth estimation is a useful ability in and of itself. Robust autonomous systems
should be able to estimate depth from vision alone, as we can, so that they can perform
safely when their other means of sensing depth, such as LiDAR and structured light sensors,
fail them.

6. Unlike measurements from other sensory domains, such as hearing or smell, depth is easy
to simulate faithfully in arti�cial environments.

There are clear limitations to this problem as well, that make it less ideal than related problems
as a testing ground for models of visual intelligence. Experiments on human subjects suggest that
monocular cues such as angular declination enable accurate reasoning about 3D object position
(Loomis [2001], Ooi et al. [2001]) but experimental limitations restrict these results to objects
within about 7.5 meters of the observer. Even if it were clear that humans are capable of accurate
monocular depth perception over a broad range of distances, it is a conceptual mistake to assume
that it is feasible or appropriate to learn how to perceive depth from images without additional
information. It is likely that humans bootstrap complex spatial reasoning from many di�erent
kinds of experiences, and as a result we are able to infer depth from images fairly well. Training a
system to output depth from images in a supervised-learning setting with just those inputs may
result in a similar type of brittleness to that which the phenomenon of adversarial fooling exposes
in neural network image classi�ers. It is important, therefore, not to mistake good performance of
systems trained this way with robust performance until they demonstrate attributes characteristic
of robust systems. Exhibiting strong generalization to environments substantially unlike those
used for training, for example by training on real images and testing on line drawings, is a better
indication of robust performance than the typical view of generalization to a held-out set from a
fairly homogeneous dataset. Of course, if adversarial examples are found, they must be regarded
as strong proof that the system has not achieved robust performance.

Despite the limitations of the problem of learning to estimate depth from single images, I
believe it is a good �rst step toward building multimodal alignment systems. Due to the substan-
tial complexity of working with deep neural networks and their associated infrastructure, the
simplicity of this problem’s scope adds to its appeal. Expansion to more complex problems, thus
enabling more robust models, is an exciting area of future development that I discuss in Section
5.7.

5.3 Related work
There is a large and rapidly accumulating body of work on the subject of depth estimation in
general, and depth estimation from single monocular images in particular. I focus on a few illus-
trative examples in order to point out salient di�erences between my approach to this problem
and the approaches used by others.

92



Related work

The Make3D program developed by Saxena et al. [2008] uses an MRF to reconcile surface
positions and orientations of the approximate surfaces represented by neighboring superpixels
of an image. The authors used an engineered feature set, based on such monocular cues to depth
as sizes of detected objects, texture gradients, and line orientations, as features in a supervised
learning setting. Hoiem et al. [2005] (HEH) obtained similar results with a simpler, cut-and-fold
model of transforming images to 3D models. HEH used a learned classi�er to group superpixels
into constellations belonging to ground, vertical surfaces, or sky based on a set of 66 engineered
features. Both Make3D and the work of HEH, as well as similar more recent work on estimating
depth from object labels with engineered features by Ladický et al. [2014], produced qualitatively
good results, especially considering that their work preceded the popularity explosion of deep
feature-learning. This work is also task-speci�c in that the engineered features and the learned
models are designed solely to estimate depth from monocular images. By contrast, my interest
in depth estimation in a feature-learning context is in using depth estimation to help the system
learn the regularity and constraints of the physical world, thus producing more robust learned
feature representations than it would learn if it were trained on a purely visual task.

Eigen et al. [2014] and Eigen and Fergus [2014] used staged convolutional neural networks to
estimate depth from images. The �rst stage of the architecture of Eigen et al. [2014] estimated a
low-resolution depth image from the RGB image, which their system then presented along with
the original RGB image to a second stage, which produced a higher-resolution depth image. The
work of Eigen and Fergus [2014] expanded this architecture by adding a third stage, and by pass-
ing feature maps between stages as I did in my work rather than passing depth images directly.
Furthermore, Eigen and Fergus [2014] expanded the original work to a multi-task estimation
problem, estimating surface normals and semantic labels alongside depth.

In my work I likewise used a staged architecture with interpretable internal signals. A mech-
anistic di�erence between my work and the work of Eigen et al. [2014] and Eigen and Fergus
[2014] is that my network is fully convolutional whereas the networks in the referenced work re-
quire several fully-connected layers, and as a result my model is signi�cantly smaller than that of
Eigen and Fergus [2014] while producing qualitatively good results, and my model scales, with-
out modi�cation, to inputs of di�erent sizes. Also unlike this referenced work, my architecture
reuses weights among the stages via skip connections, drawing on intuition that the same fea-
tures that build up a hierarchical representation leading to approximate global depth estimation
can also contribute to re�ning that global depth estimation. I discuss this intuition in Section 5.4
and illustrate it in Figure 37. Most importantly, my focus is on achieving new ability through
semantically-interpretable ports rather than achieving benchmark milestones. My architecture
derives unique bene�t from the interpretability of the internal signals through a propagator-like
mechanism to inject signals from other sources into the neural network. I discuss this in depth
in Section 5.6.5.

Li et al. [2015] use learned features transferred from AlexNet (Krizhevsky et al. [2012]) for
depth estimation via conditional random �eld (CRF), thus demonstrating the potential for features
learned for image classi�cation to inform depth estimation. Liu et al. [2016] take the merger of
neural networks with graphical models a step further, by exploiting continuity assumptions and
di�erentiable potential functions in the graphical model to train their neural network to learn
the unary and pairwise potential functions of a CRF. Laina et al. [2016] show that a conceptually
simpler fully-convolutional model based on the architecture of ResNet (He et al. [2015]), albeit
with a specialized reverse-Huber cost function, also performs well. Kuznietsov et al. [2017] build

93



Approach

further upon the ResNet-based approach with a specialized cost function that incorporates stereo
disparity and sparse ground truth obtained from LiDAR to train the neural network.

I aim to take the thematic result of such work, that feature representations learned by convo-
lutional networks perform well on depth estimation, to the next level by showing that a multi-
modal, multi-task system with �exible, task-dependent data-�ow can improve robustness simul-
taneously on many tasks. The salient di�erence between my work and the related work on
monocular depth estimation with neural networks cited here is that, where the authors of the
cited work focus primarily on advancing the state of the art on monocular depth estimation as
an isolated problem of interest, I seek to understand whether incorporating depth estimation in
multi-task perception systems improves robustness of those systems, by forcing the systems to
learn more relevant representations.

Apart from the push to advance the state of the art in monocular depth estimation using ever
deeper and higher-capacity neural network models, some recent work in the area has developed
interesting, perceptually-motivated solutions to the problem. Zoran et al. [2015] use the insight
that sparse pairwise relationship estimates, such as point A is farther than point B, are easier
to obtain than dense metrics such as maps of absolute depth. These authors’ depth-estimation
framework comprises a method of extracting point pairs from an image, a three-way classi�er
for assigning ordinal relationships to the points, and a method to propagate the resulting partial
ordering of points to form a dense depth map. This framework has strong potential to combine
with the work that I present in this chapter, because the explicit use of propagation may allow it
to complement methods I have developed for depth estimation. Speci�cally, my neural network
depth estimation models are designed to accept signals from external sources to enhance their
own predictions. The method of Zoran et al. [2015] seems to be a compatible external information
source, speci�cally because it generates sparse depth maps and the models I developed can accept
sparse depth maps and increase their resolution. Thus a promising area for future development
would be to connect the frameworks together.

In work by Zhang et al. [2016b], the authors framed the problem of depth estimation from
monocular images as an unsupervised learning task in which a variant of an autoencoder (Hin-
ton and Salakhutdinov [2006]) learns two disjoint prediction pathways in order to reconstruct its
input: the RGB-D images recorded by a structured-light sensor. One pathway sees only the depth
channel and must reconstruct the image, the other sees the image and must reconstruct the depth
channel. The authors argue and present evidence that their split-brain autoencoder architecture
learns a stronger feature representation than autoencoder architectures that rely on representa-
tional bottlenecks, by forcing cross-modal generalization rather than compression of the input.
This is the same intuition that Coen [2006] �rst identi�ed and supported with extensive experi-
mental results, and which motivates my work as well: that redundancy of the senses empowers
self-supervised learning of the regularity and constraints of the natural world. My focus is on
how best to apply this intuition to build robust perception systems.

5.4 Approach
In this section I describe the neural network architecture I used to estimate depth from monocular
images. I �rst motivate the design choices underlying the architecture in terms of my overarch-
ing goal of building alignment-driven vision systems, and in consideration of observations about
how neural networks achieve good statistical performance while remaining susceptible to brit-

94



Approach

tle failures, as demonstrated in Chapter 2. Breaking with the tradition of just so motivations of
the design choices guiding neural network architectures, I motivate my design choices in terms
of three main desiderata: that the network should have forti�cations against adversarial exam-
ples, that it should have semantically meaningful ports, and that it should build upon existing,
empirically-successful designs. Additional less prominent design decisions that arose from itera-
tion of the design are identi�ed as such, with justi�cation in terms of observed shortcomings and
desired improvements. I discuss each of the main desiderata here.

5.4.1 Forti�cation against adversarial examples

A high-level lesson from the results of the work described in Chapter 2 is that neural networks
take the path of least resistance. The apparent ubiquity of adversarial examples, and the rela-
tive ease by which they are generated, hint at a deep problem with deep feed-forward neural
networks: it may not be safe to assume that solutions to many problems of interest can be fully
described by continuous or piecewise-continuous manifolds in some representation space. This
assumption underpins most, if not all, work with neural networks. We should be suspicious
that there might always be strong counterexamples, that is, anomalies that have no sensible in-
terpretation in terms of natural phenomena, that are arbitrarily close to normal examples, e.g.,
correctly-classi�ed images. If that is the case, no architecture within the current feed-forward
paradigm will be immune to fooling by adversarial examples. Ben-Yosef et al. [2015] suggested
that in natural vision, bottom up recognition stages similar to high-performing neural network
models trigger activation of top-down processes to provide the detailed compositional interpre-
tation observed in natural vision. A generalization of this idea is that feed-forward processes
provide hypothesis generation which must be complemented by hypothesis testing via feedback
processes. One form of hypothesis testing is the type explored by Ben-Yosef et al., namely, eval-
uating a recognized object to identify its components. I anticipate that such hypothesis testing
via feedback will be the only reliable way to fully harden a vision system against adversarial
examples and related brittle phenomena.

Aside from widespread neglect that adversarial fooling is currently a serious impediment to
development of robust vision models, one reason that feedback is not more prevalent in vision
models is the signi�cant technical challenge of training models with feedback via stochastic gra-
dient descent (SGD). Training networks with feedback via backpropagation through time leads
to problems of exploding or vanishing gradients. As shown by Pascanu et al. [2012], if all eigen-
values of the recurrent weight matrix are less than 1, all su�ciently long-term components of the
gradient will vanish. If at least one of the eigenvalues of the recurrent weight matrix is greater
than 1, then it is possible for the gradient to explode. Rather than tackle head-on the formidable
optimization challenges inherent in applying feedback to neural networks, I used a compromise
strategy to help fortify the network against adversarial fooling, while preserving a feed-forward
architecture.

The strategy I used to help fortify the network while preserving a feed-forward architecture
is to enforce several di�erent cost functions at di�erent output ports within the network, to en-
courage the network to develop more relevant feature representations. End-to-end training of
deep networks has led to demonstrably better feature representations than the engineered fea-
ture representations of earlier models. As the experiments in Chapter 2 suggest, though, the
huge capacity of deep models may lead to a subtle kind of over�tting in which networks develop

95



Approach

good measured generalization performance on the task used for training, e.g. 1000-way image
classi�cation, but they do so by means of shortcut feature representations that do not stand up to
scrutiny and are easily fooled. One way to mitigate the shortcut-�nding problem is to engineer
several cost functions to enforce good attributes of a feature representation, without engineering
the representation itself. This is the approach I have taken. I note that small patches of images
provide relative-depth clues, like occlusion and shadows. Intermediate-size patches may provide
some absolute-depth clues, like detections of simple constant-size objects like light switches and
utility plugs, and some relative-depth clues like perspective lines. Aggregating such clues over
the whole image, and accounting for global context like �oor and ceiling locations, might plau-
sibly give an impression of absolute, global depth. Figure 37 depicts a high-level overview of a
feed-forward network that uses several cost functions to enforce the depth-estimation feature
representation at �ne, intermediate, and coarse levels. Such a network is designed to minimize
the e�ect of shortcut �nding, but I expect that it cannot fully address the problem of adversarial
fooling and related brittleness until the network is provided with feedback-derived hypothesis
testing.

Figure 37: High-level depth-estimation network design

High-level network architecture is motivated by structural elements in images. Fine-scale features such
as shadows and occlusions can both re�ne a depth map estimated by intermediate features and become
building blocks of features of intermediate scale and complexity. Likewise, intermediate scale features
play a role in re�nement of depth maps estimated by scene-level features, and serve as building blocks of
the scene-level features themselves. The lowest-resolution, medium-resolution, and full-resolution depth
maps serve as semantically-meaningful ports at which loss can be computed independently, and at which
the network can be connected to other networks.

5.4.2 Semantically meaningful ports

Another consideration that in�uences network structure is the desire to have semantically mean-
ingful signals in several places within the network, rather than restricting interpretability of sig-

96



Implementation

nals to the inputs and output of a long tube �lled with indecipherable semantic juice. There are
several related motivations for semantically meaningful ports. One motivation is in support of
forti�cation via multiple cost functions as discussed; in order to have a cost function, there must
be a meaningful quantity to evaluate. Another motivation is better qualitative assessment of how
a network learns: the more windows into the network through which a system designer can ob-
serve measures of performance, the better the designer can build intuition for the network’s per-
formance. A third motivation for semantically meaningful ports is to enable separately-trained
networks to be connected together at many interfaces. To progress toward the goal of densely-
connected multimodal networks, it is a good and perhaps necessary engineering principle to
achieve some modularity by training parts of the network to �ll distinct functional roles. Good
modularity requires good interfaces with meaningful abstractions. Finally and of most immediate
interest, having ports in the network with de�ned semantics empowers neural networks with a
propagator-like ability: the ability to combine signals from several origins. Having multiple net-
works use shared interfaces to negotiate the interpretation of co-occurring percepts in di�erent
sensory modalities evokes work by Coen [2006] on cross-modal clustering. As I describe in detail
in Section 5.6.5, it is possible to introduce external signals into the neural network through its
ports, to correct errors and improve performance. This capability holds additional promise as
a way to implement feedback without encountering the gradient badness previously discussed,
and is thus an exciting opportunity for future work.

5.4.3 Empirically successful foundation

An additional contributing factor to design decisions is the desire to use empirically-validated
techniques in the design of the new network. Deep learning’s most esteemed practitioners advise
against excessive application of creativity in new designs7 and my own experience corroborates
that the advice is sound, albeit dissatisfying. My early attempts at building deep neural networks
with unusual topologies drifted into the weeds of uncharted optimization problems without clear
solutions of any kind. It was only by adopting conservative designs, that were able to bene�t
from transfer learning and from established methods of tuning hyperparameters, that I was able
to experience more positive outcomes.

In this respect it is bene�cial that the network depicted in Figure 37 has the hourglass structure
with skip connections that characterizes many successful generative networks. For example,
the semantic segmentation network of Long et al. [2015] and the depth estimation network of
Kuznietsov et al. [2017] both have similar topology to the network structure depicted in Figure 37,
namely, a directed acyclic graph (DAG) consisting of a main backbone with skip connections. The
main feed-forward portion of my network is designed so that it can be initialized with pre-trained
weights of VGG-19 (Simonyan and Zisserman [2014]) for faster training via transfer learning from
VGG-19, which was trained for image classi�cation.

5.5 Implementation
I considered many variations on the high-level architecture depicted in Figure 37. The end result
is depicted in Figure 38. The only structural di�erence between the implemented network and the

7Advice given in a presentation by Andrew Ng entitled AI is the New Electricity at MIT on November 6, 2017.
Similar advice is contained in the practicum chapter of Goodfellow et al. [2016].

97



Implementation

high-level schematic depicted in Figure 37 motivated by the desiderata I identi�ed is the addition
of skip-forward connections. The skip-forward connections carry the input image, adjusted for
scale, forward to the intermediate and �nal depth-estimation side-chains of the network. I found
this addition to substantively increase the apparent sharpness of the depth maps. In the network,
the signal passed from side-chain A to side-chain B and the signal passed from side-chain B to
side-chain C represent the internal signals with interpretable semantics. At every pixel location
of side-chain A’s 1

16
-scale output and side-chain B’s 1

8
-scale outout, the 64 vector components of

each of these signals linearly combine to form reciprocal-depth estimates.

64

64

‖•‖ ⊞

‖•‖

‖•‖

128

‖•‖ ⊞
128

‖•‖ ⊞

‖•‖
256

256
‖•‖

‖•‖
256

256
‖•‖

‖•‖ ⊞

‖•‖
512

512
‖•‖

‖•‖
512

512
‖•‖ ‖•‖ ‖•‖ ‖•‖ ‖•‖

‖•‖ ‖•‖ ‖•‖ ‖•‖‖•‖

‖•‖ ‖•‖ ‖•‖ ‖•‖‖•‖

2× bi-linear
upsample

¼× downsample

2× bi-linear
upsample

256 128 64 64 1

3

⅛× downsample

input RGB image

3 3

64 64

128 128 64 64 1

128 128 64 64 1

256 (concat)

384 (concat)

⅛× depth prediction

¼× depth prediction

⅟16× depth prediction

BACKBONE

SIDECHAIN A

SIDECHAIN B

SIDECHAIN C

‖•‖

⊞

batch normalization

rectified linear unit

max pool

SYMBOL KEY

*
internal depth signal

Figure 38: Neural network for depth estimation

The backbone of the network, shown in gold, is initialized to the corresponding weights of VGG-19. The
side-chains are randomly initialized. The convolutional layers in skip-forward connections are each initial-
ized to the �rst-layer weights of VGG-19. All convolution kernels are 3-by-3 except the side-chain outputs
which are 1-by-1. The purple asterisk above side-chain A marks the point of entry for alternatively-sourced
signals. The internal signals linking side-chains A and B, and side-chains B and C have straightforward
interpretations because their components combine linearly to produce depth estimates at di�erent scales.

The most successful training strategy among those that I tried was to �x the weights orig-
inating from VGG-19 and aggressively train the randomly initialized weights, and then �nalize
the network by training all weights simultaneously and less aggressively. I present the details of
this training procedure in Section 5.6. The most successful cost function among those I applied
was the mean-squared error (MSE) of the reciprocal depth function:

98



Experiments

L(R,R∗) = 1

n

n∑
i

(Ri −R∗i )2 (16)

In this MSE loss, n is the number of valid depth values in the ground-truth depth map R∗, as
speci�ed by a mask bitmap. R andR∗ are de�ned as the element-wise reciprocals of the estimated
and ground-truth depth maps Y and Y ∗, respectively:

Ri =
1

Yi
, R∗i =

1

Y ∗i
(17)

The choice to have the network output reciprocal depth rather than depth follows from the
geometric properties of measurements made by the Kinect sensor. The sensor works by project-
ing a constant, non-uniform pattern of near-infrared dots on the scene using an IR laser and a
di�raction grating. It determines parallax by measuring the projected pattern with a dedicated
IR camera and then correlating the measured projected pattern with a template. Depth is propor-
tional to the reciprocal of the parallax measurement.

Parallax is the Kinect sensor’s intrinsic type of measurement: the IR camera that measures
the projected pattern has a grid of equally-spaced sensors, and parallax is directly proportional
to pixel displacements on this sensing grid. Whereas it is common practice to have networks
learn to represent the log of depth (Eigen et al. [2014]) or to represent the depth values directly
(Eigen and Fergus [2014]), reciprocal depth is, in principle, better suited to the capabilities of the
sensor. Reciprocal depth is asymptotic as depth increases whereas both log depth and direct depth
are unbounded. The reciprocal, native loss function therefore does not unfairly punish errors in
distant objects that cannot be accurately represented in the ground-truth data. Of course, the
reciprocal depth prediction and associated family of loss functions might be less appropriate for
a sensor that operates via a di�erent fundamental principle than parallax, such as time-of-�ight
LiDAR.

5.6 Experiments
In this section I describe the infrastructure, data, and other details of the training process. I
present results of training the network with two di�erent ways of handling an issue arising from
scale-dependent features in the training data. I demonstrate how the semantically-meaningful
ports of the network enable the network trained to estimate depth maps from images to also
increase the resolution of existing depth maps, using images and low-resolution depth maps as
input.

5.6.1 Training infrastructure

All training was carried out by a single GNU/Linux node equipped with dual six-core Xeon X5690
processors clocked at 3.47 GHz, 96 GB of system memory and 4 GTX 1080 GPUs with 8 GB of
GPU RAM each. TensorFlow (Abadi et al. [2015]) version 0.12.0-rc0 provided all neural network

99



Experiments

and optimization routines. GPU memory per card revealed itself initially as a bottleneck when
training large networks or using large batch size, so I created a system of abstractions enabling
more �exibility in splitting up networks and training jobs across several GPUs. The abstractions
were of crucial importance to train certain models on the hardware, but they needed to accom-
modate interactions between models of parallelism and the details of neural network techniques
such as batch normalization (Io�e and Szegedy [2015]), and GPU architectural minutiae such as
DMA channels. Section A.5 contains in-depth treatment of selected technical issues addressed
by my abstractions.

File-system read performance created another bottleneck. The training throughput of the 4
GPUs, when properly con�gured, exceeded the read performance of the �le-system more than
10 fold, and though a variety of database solutions to such problems exist it was more expedient
to build a purpose-speci�c data pipeline than to deploy an existing database. The data pipeline
consists of a 22 GB in-memory ring bu�er into which a tunable number of dedicated threads read
training examples from disk in order to maximize �le-system throughput. The oldest training
example in the bu�er is overwritten whenever new data is ready. Batches of training examples
are constructed by randomly selecting examples from the approximately 10,000 640x480-pixel
24-bit RGB images and corresponding 32-bit �oating-point depth maps that �ll the ring bu�er. In
addition to the regularization induced by this batch-shu�ing process, data augmentation in the
form of randomly-applied cropping, horizontal �ipping, scaling, rotation, brightness shift, color
shift, and contrast adjustment additionally contribute to diminishing the e�ect of the relatively
slow turnover rate of training examples in the ring bu�er. Every time the system draws a sam-
ple from the ring bu�er, the system applies the randomized data-augmentation procedures to it,
resulting in e�ective size ampli�cation of the pool of examples present in the bu�er.

The color, contrast, and brightness data-augmentation procedures are implemented by Ten-
sorFlow, whereas the cropping, rotation, and scaling are performed �rst by an external training
harness in order to make use of the spare CPU time that would otherwise be spent idle dur-
ing disk-read and GPU operations. The augmented training data are accumulated in several FIFO
queues that are opportunistically �lled. The data pipeline architecture is implemented as a collec-
tion of modular components that can be instantiated as separate processes that communicate via
local sockets so that the pipeline start-up delay need only be incurred once during neural network
debugging. Alternatively, all pipeline components can exist as objects within the same process
that communicate via shared memory, to lower communication overhead during long training
runs. All data-pipeline components are implemented in the Python language, and CPU-intensive
image transformation is achieved with OpenCV (Itseez [2015]) version 3.1.0.

5.6.2 Training data

To train the neural network I used the raw portion of the NYU Kinect Dataset Version 2 (NYU
Depth) (Silberman et al. [2012]).8 NYU Depth contains 407,024 image-depth pairs from 464 scenes
of cluttered indoor environments. I divided the scenes by the authors’ convention into train and
test subsets and trained on the 249 scenes in the authors’ train subset. To test the networks, I
used the labeled version of the dataset, which consists of 654 image-depth pairs drawn from the
215 test scenes. These 654 depth maps are in�lled so that there are no invalid regions, which

8A Free version of the NYU Depth Toolkit, which I translated from a proprietary platform to SciPy (Jones et al.
[2001–]) and OpenCV (Itseez [2015]), will be made available to download from the NYU-Depth website.

100



Experiments

are common in the raw data due to the Kinect sensor’s response to occlusions, certain types of
lighting and specular surfaces. Additionally, these curated images were chosen by the dataset
designers not to contain sensor errors and misalignments that are not infrequent among the raw
data.

5.6.3 Training particulars

I initialized the VGG backbone of the network shown in Figure 38 with the pre-trained weights of
the VGG-19 network, pre-processed by the procedure described in Section A.4 in order to retro�t
the network with batch normalization. Other weights were initialized to random Gaussian noise
with µ = 0 and σ = 0.1. Training used an L2 weight-decay regularization constant of 10−4, a
batch size of 128, and Adam optimization (Kingma and Ba [2014]) with β1 = 0.9 and β2 = 0.999.
The batch-augmentation parameter used in the multi-GPU batch-normalization hack discussed
in Section A.3 was �xed at 0.5.

I experimented with many strategies and schedules for training the di�erent parts of the
network. The most valuable lesson from this experimentation was that there is clear bene�t, in
terms of convergence time and qualitative network performance, to training by applying the loss
of Equation 16 simultaneously to the 1

16
, 1
8
, and 1

4
-scale depth outputs that the network produces.

The observed superiority of this approach corroborated the intuition of Section 5.4.2 that it is a
bene�cial engineering principle to build networks with semantically-meaningful ports.

I found that the training strategy that resulted in the fastest decrease in training and validation
loss was to �x the weights that are initialized from the pre-trained VGG-19 network, and train the
side-chain networks with an initial learning rate of 0.01. I multiplied the learning rate by a factor
of 0.1 each time the network appeared to approach an asymptote in validation performance, stop-
ping when the learning rate reached 10-5, which happens to be the same �nal learning rate used to
train VGG-19 according to Simonyan and Zisserman [2014]. I then trained the whole network at
this �nal learning rate until I perceived no qualitative improvement in side-by-side comparison of
validation output between snapshots of the network over time. This last qualitative �ne-tuning
step caused noticeable improvement in the network’s output even though the change in mea-
sured validation error was insigni�cant. It is unclear whether di�erent learning-rate schedules
and training policies would produce better results; I settled on the protocol I described by trial
and error over many training runs and I chose this particular method based on superior rate of
improvement. Based on this experience I believe other methods of adjusting learning rate would
likely work as well.

The inputs to the network during training were 224x224 image crops, generated by randomly
selecting a square region of image with a side length between 320 and 480, applying data augmen-
tation, and then re-sizing the image to 224. Data augmentation used random rotations of ±20◦,
random ±5◦ shifts in hue, random contrast and brightness adjustment between 0.9 and 1.1, and
a random decision to �ip horizontally. All probability distributions for data augmentation were
uniform. The image mean, computed over the whole training corpus, was subtracted from the
input images. This mean was per-pixel, computed over the training data and their mirror images,
and blurred to remove artifacts. I tried several strategies for adjusting depth-map values along
with image scaling, discussed in Section 5.6.4. The cost function was MSE in the reciprocal depth,
as discussed in Section 5.5.

101



Experiments

5.6.4 Evaluation

In order to obtain a preliminary assessment of the system’s performance I evaluated it using
the error quanti�ers used in prior depth-estimation work along with additional quanti�ers. I
emphasize that evaluation by metrics is not the end goal of my work; premature emphasis on
numerical measures of performance invites a severe and often-overlooked hazard, as I argue in
Section 1.3 and provide evidence for in Chapter 2. Bearing this caveat in mind, I measured the
system’s performance with the quanti�ers Eigen et al. [2014] used in their work, adding to that
list a measure of error in reciprocal distance that is equal to the loss used to train the highest-
resolution output of the network, with regularization terms removed. The de�nitions of the error
quanti�ers are presented in Table 1. In the quanti�er de�nitions in the table, Np is the number
of elements in a single depth map which is equal to the number of pixels in a (re-sampled) test
image. The notation yi denotes a single element of y. The depth estimated by the network is
denoted by y with corresponding ground truth y∗. The test set is T .

Table 1: De�nitions of Evaluation Error Quanti�ers

Error quanti�er De�nition
Threshold average fraction of yi such that max( yi

y∗i
,
y∗i
yi
) < Tthr

for 1 ≤ i ≤ Np

Absolute relative di�erence 1
|T |
∑

y∈T |y − y∗|/y

Squared relative di�erence 1
|T |
∑

y∈T ‖y − y∗‖2/y

RMSE
√

1
|T |
∑

y∈T ‖y − y∗‖2

RMSE, log
√

1
|T |
∑

y∈T ‖log y − log y∗‖2

RMSE, log, scale invariant
√

1
|T |
∑

y∈T ‖log y − log y∗ + α(y, y∗)‖2

where α(y, y∗) ≡ 1
Np

∑Np

i=1(log y
∗
i − log yi)

RMSE, reciprocal
√

1
|T |
∑

y∈T ‖
1
y
− 1

y∗
‖2

Notational shorthand represents element-wise reciprocal as 1
y and element-wise natural log as

log y.

Table 2 shows the results of two trained networks compared with results that approximate the
state of the art on this dataset, and to the value of the metrics using the data mean as the estimate.
The network represented by the �rst column has the normal perspective-derived scale factor
applied to depth-map values: scaling the training image by a factor ofZ scales the depth values by
1/Z . I noted when evaluating this network that the optimal scale factor, which minimized RMSE
on the training data, was 1.14, when the scale factor due to the actual image scale transformation
was 1.67. The disparity suggests that the network had di�culty learning the scale relationship

102



Experiments

between image features and depth maps. A speculative cause of the di�culty is that max-pooling
layers in the network, which impart some scale invariance to feature representations, prevented
the network from making full use of the relationship between scale and depth.

When I removed the scale factor entirely during training, that is, when I re-scaled the image
without applying any transformation to the corresponding values of the depth map, the measured
optimal scale factor became 0.998. Performance on the RMSE metric de�ned in Table 1 worsened,
but the depth maps remained qualitatively similar. Qualitatively better results appeared when I
trained the network with a scale factor that was randomized so that the depth scale was decoupled
from the scale of the image. The measured optimal scale factor was likewise close to 1, and the
performance measures substantively the same as the performance measures for normal scale (in
which the empirical optimal scale factor of 1.14, rather than the geometrically-motivated value of
1.67, was applied at test time). Investigating the cause of the better qualitative results with the less
informative augmented training data is an opportunity for future work, but I speculate that it is
because the training with unreliable scale more e�ectively removes the e�ect of scale-dependent
features on learning, thus forcing the network to learn features that are good scale-invariant
indicators of depth. Because max pooling does not interfere with the scale-invariant features,
the performance of the network appears better. Figure 39 depicts the output of the normal-scale
network and the decoupled-scale network on several images from the test data. Though both
exhibit blurred edges that are characteristic of MSE loss, the decoupled-scale network achieves
more realistic performance.

Table 2: Values of Selected Error Quanti�ers

Error quanti�er Normal Scale Decoupled Scale E.F. Mean
Threshold Tthr = 1.25 0.58 0.60 0.77 0.42
Threshold Tthr = 1.252 0.87 0.88 0.95 0.71
Threshold Tthr = 1.253 0.96 0.97 0.99 0.87
Absolute relative di�erence 0.24 0.22 0.16 0.41
Squared relative di�erence 0.20 0.21 0.12 0.58
RMSE 0.67 0.75 0.64 1.24
RMSE, log 0.28 0.27 0.21 0.43
RMSE, log, scale invariant 0.23 0.21 0.17 0.30
RMSE, reciprocal 0.16 0.13 – –

E.F. refers to Eigen and Fergus [2014]. Mean results are from Eigen et al. [2014]. For the
top 3 rows, higher values are better, and for the bottom rows, lower values are better. The
decoupled scale results use a data pre-processing technique to reduce dependence on scale.

5.6.5 External signal introduction

A goal of the architectural choices discussed in Section 5.4.2 is to enable signals within the net-
work to come from alternative sources. The principle of alternative sources for intermediate
signals is a powerful idea taken from work on propagators (Sussman and Radul [2009]), that I
identi�ed in Section 4.4.5 as a key element to preserve from my e�orts to use propagators in
vision systems.

103



Experiments

(a) Image (b) Normal scale (c) Decoupled scale (d) Ground truth

Figure 39: Outputs of two depth-estimation networks
Given the input image (a), the network trained without special attention to scale dependence (b) produces
depth maps that exhibit lower RMSE than the depth maps produced by a network forced to ignore scale-
dependent features (c), but this scale invariant network produces results that are qualitatively more similar
to ground truth (d). All depth maps are independently normalized before coloring. The color map was
designed by Kovesi [2015].

104



Discussion

To take the �rst step toward realizing neural network architectures containing multiple, re-
dundant information pathways characteristic of propagator systems, I con�gured the network
depicted in Figure 38 to accept another input in addition to its main input, which is an image.
The additional input is a specially-processed depth image at the lowest resolution estimated by
the network of Figure 38, that is, a 1

16
-scale depth map. The depth map is processed by another

neural network, depicted in Figure 40, called an ally network to emphasize its cooperative role
with the depth-estimation network. The ally network has been trained to estimate the inter-
nal signals of the depth-estimation network that are passed from side-chain A to side-chain B
as depicted in Figure 38. Speci�cally, this internal signal is a 64-channel feature map with just
1

256
the area of the input image. I trained the ally network shown in Figure 40 by running the

same training data with data augmentation used to train the network architecture of Figure 38
using the best-performing weights learned by the decoupled-scale training method. The training
objective for the ally network was to minimize MSE loss, and I used a learning rate schedule sim-
ilar to that used to train the main network. Convergence to very low validation error happened
quickly, which corroborates intuition that the pre-processing of raw depth to the internal signals
of side-chain A is an easy function to approximate.

*
internal depth signal

⅟16× depth signal

‖•‖ ‖•‖ ‖•‖ ‖•‖ 

64 64 64 64

DEPTH ALLY NETWORK

1

Figure 40: Ally network structure

The 5-layer ally network is randomly initialized and trained to estimate the internal signals marked by the
purple asterisk in Figure 38 from a 1

16 -scale depth map. The ally network can then be used to introduce
external signals into the estimator network.

The ally network then provided a way to derive the lowest-resolution depth signal from an
outside source, rather than from side-chain A of the estimator network. Figure 41 depicts example
output of the network in one such con�guration: the con�guration where the 1

16
-scale depth

ground-truth value is supplied to the ally network and the resulting signal is supplied to the
depth-estimation network at the point labeled by the purple asterisk in Figure 38 in place of
the output of side-chain A. In this con�guration, the two networks cooperate as a depth super-
resolution network, using the images to increase the area resolution of the supplied depth map
by a factor of 16.

5.7 Discussion
The neural network presented in this chapter is a step toward implementing several powerful
ideas originating from the propagator architecture in a neural network framework. One pow-
erful idea is that exposing semantically meaningful signals inside a network empowers existing
machinery to combine in new ways to solve new problems. In the case of the propagator ar-
chitecture, components can bene�t from such reuse without needing to be redesigned, and in

105



Discussion

(a) Image input (b) Depth input (c) Depth output (d) Ground truth

Figure 41: Signal-introduction depth up-sampling
The decoupled-scale network functions as a depth super-resolution network without retraining or modi�-
cation. The images (a) and 1

16 -scale down-sampled depth maps (b) are provided to the network, resulting
in an up-sampled depth map (c) (14 -scale) that is very similar to ground truth (d).

106



Discussion

the case of neural networks, without needing to be retrained via expensive supervised training.
Another powerful idea is that computational �exibility arises from signal redundancy: when a
network has several alternative ways to compute an internal signal under di�erent conditions, it
can opportunistically �nd new paths through the computation graph and hence novel solutions to
problems. I combined these ideas to show that a network trained to estimate depth from images,
when combined with an ally network that has learned to estimate one of the original network’s
internal signals, can solve a new problem of depth super-resolution without any retraining.

5.7.1 Extending ally networks

The ally network that I presented in this chapter is the simplest possible ally. It predicts the
internal signal of another network that is known to linearly estimate depth, directly from the
raw depth signal itself. To take the ally concept to the next level, the ally could learn to pre-
dict internal signals from a di�erent source, for example, depth from optical �ow, to achieve
a structure-from-motion estimator. Similarly, it is not necessary to entirely train one network
before training its allies. Training of ally networks can be symmetric: freezing a network and
training an ally, then freezing the ally and training the original network, in turn. This is anal-
ogous to the way that adversarial networks are trained, except that the additional symmetry of
the cooperative arrangement does not limit the number of participants to 2. I note the similarity
between this method of training ally networks and work by Beal [2007] on casting learning as a
communication-bootstrapping problem.

To take the ally concept yet a step further toward densely-connected cooperative network
structures that can support robust visual intelligence, the process of combining allies’ outputs
can be automated. The network in the proof of concept that I described in this chapter contains
con�gurable switches to choose its mode of operation: by estimating depth from an image alone,
or from an image and a low-resolution depth map, or by making a pixel-wise binary decision as to
whether the source of a signal derives from the depth estimator or the ally network.9 A promising
methodology to apply to achieving the desired automation is to make the switches continuously
variable rather than binary, so that they produce an element-wise weighted combination of allies’
outputs. Then, train other routing networks to control the switches. These routing networks could
be trained independently of the ally nets. The routing network could, for example, accept all of
the ally networks’ outputs as its input, and use a softmax to control how the ally outputs are
combined. Such a soft decision would enable a training strategy that alternates between mutually
training ally networks in one phase, and then training routing networks in another phase. Once
trained, the routing networks could then be used to achieve the best cooperation among ally
networks under di�erent conditions.

5.7.2 Applying immutable di�erentiable joints

Another promising direction for future development is to apply non-learned transformations to
the signals exchanged between cooperating networks via their ports. Instead of being passed
directly from one network to another, certain signals with known interpretation can be trans-
formed programmatically between processing by the networks. A raw depth map, for example,

9The pixel-wise mode facilitates use of the network with a Kinect sensor, by allowing pixels for which the Kinect
has valid depth data to come from the Kinect, others from the depth estimator.

107



Contributions

has an interpretation as a set of 3-dimensional points. Those 3D points can be transformed, for
example, rotated, translated, and re-projected onto the image plane to obtain a di�erent depth
map. Likewise, the 3D points can be used to re-project a color image to a new image plane. This
transformation would give a downstream network a new perspective on the output of the up-
stream network. Importantly, as long as the transformation permits backpropagation of gradients
through it, training the entire sequence comprised of the upstream network and the downstream
network end-to-end with SGD is possible.

It is common to apply a �xed transformation to a network’s output as part of a specialized loss
function. With the advent of generative adversarial networks (GANs) (Goodfellow et al. [2014a]),
it has become common to pit networks against each other in a contest in which the generator is
honed by a complex evolving loss function represented by the adversary. I propose to interpose
�xed transformations, derived from principled interpretation of internal signals that have speci�c
meanings, between segments of neural networks in order to a�ect the dynamics of learning. For
convenience I call the �xed transformations immutable di�erentiable joints (IDJs).

One way to apply IDJs in the depth-estimation problem that is the focus of this chapter is
to place a re-projecting IDJ between the depth estimator and an adversarial discriminator, and
to train the whole con�guration as a GAN. I anticipate that this training strategy could improve
upon preliminary results I attained using a GAN to train the depth estimator, depicted in Figure
42. The reason to anticipate improvement is that the re-projection of the image according to
the processing of the estimated depth map by the IDJ could teach the adversary to recognize
the di�erence between realistic image re-projections and unrealistic re-projections according to
known rules of 3D transformation. In the GAN without re-projection by IDJ, which produced the
results depicted in Figure 42, the depth map produced by the estimator and original image are
left unmodi�ed and presented to the adversary. As the results in Figure 42 show, the depth maps
generated by the GAN have more �ne detail and are less blurry than the depth maps generated
by the MSE network. The next step in future work in this research direction is to apply the
3D-transformation IDJ between the generator and the adversary in the GAN.

5.8 Contributions
My main contributions in this chapter are as follows.

• I identi�ed properties that make monocular depth estimation a good proving ground for
neural-network-based alignment systems.

• I designed a neural network architecture for monocular depth estimation based on the prin-
ciples that it should be resistant to adversarial attack and weak generalization of the type
I investigated in Chapter 2, that it should have semantically meaningful ports, and that
it should bene�t to the maximum extent possible from transfer learning and established
methods. The network achieves qualitatively good performance, and decent benchmark
performance.

• I introduced a method of training depth-estimation networks to produce reciprocal depth
rather than linear depth or log depth, and provided justi�cation in terms of the operational
speci�cs of the parallax-measurement device used to collect the training data.

108



Contributions

(a) Image input (b) MSE-loss (c) GAN (d) Ground truth

Figure 42: GAN compared to MSE-trained network
The GAN in (c) passed both its depth estimate and the original image (a) to its adversary, which learned an
adversarial cost function. The output of the MSE-trained network is shown for side-by-side comparison
in (b), with ground-truth depth in (d).

109



Contributions

• I observed that removing the correspondence between image scale and overall depth scale
in the training data qualitatively improved depth-estimation results, and proposed a po-
tential explanation for the observation in terms of limitations on the precision of scale
correspondences that can be learned by a network with max-pooling layers.

• I introduced ally networks: independently-trained neural networks that learn to communi-
cate via shared, semantically-interpretable feature representation. I used the ally-training
method to enable a network trained for depth estimation to perform depth super-resolution
without any retraining.

110



6. Summary of Contributions

6 Summary of Contributions
To motivate this work I asked how we can account for the properties of natural vision that make
it robust. I identi�ed the properties that seem best to characterize this robustness: vision can
perform many tasks consistently under highly variable conditions, it can adapt to new tasks,
seemingly with with little preparation, and it appears to give us, its wielders, a rich compositional
understanding of what it perceives.

I made observations about natural constraints that must have in�uenced vision’s develop-
ment. Reconstructing world state from images is fundamentally underdetermined, and further
complicated by practical matters. Fortunately, though, we learn to see at the same time that we
learn to interpret other senses, and so we can exploit rich correspondence and interdependence
among the many ways we sense our surroundings. The correspondence elucidates strong con-
straints and overwhelming regularity that can be brought to bear on resolving the inherent am-
biguity of seeing. Finally, there has always been strong selectional pressure on vision processes
to be fast and directed toward survival goals.

The observations led me to characterize vision in terms of its computational imperative: in
order to perform under the constraints imposed upon it by nature, and exploit opportunities pro-
vided to it, vision must opportunistically use multimodal information in order to resolve inherent
ambiguity, and it must be able to prioritize goals.

The characterization of vision in terms of its computational imperative led to the fundamen-
tal question that motivated my work: can we completely account for vision’s robust properties
by way of processes that perform ubiquitous alignment among the elements of computation that
work together to achieve multimodal perception? By alignment, I mean a process by which com-
putational units reconcile their local state with that of their neighbors across shared interfaces.
By requiring that this process be multimodal, I suggest that vision gains its robust qualities by
recruiting the perceptual machinery of other senses. By requiring pervasive alignment, I reject
�xed top-down or bottom-up data pathways in favor of opportunistic paths through a compu-
tation graph, driven by the needs of local units of computation to �ll gaps in their local state. I
label the fundamental motivating question the alignment hypothesis and call the type of mod-
els characterized by it visual alignment models.

High-performing computer vision models of today are not alignment models. Super�cially,
this would seem to detract from the line of research inspired by the alignment hypothesis. Ob-
served more carefully, though, even the highest-performing models available su�er from certain
conspicuous failures, despite their ability to match and exceed human visual ability by some mea-
sures. What makes the failures conspicuous is that they are inexplicable both by the computer-
vision systems and by our own understanding of what they see. Furthermore, adversarial images
and training examples that cause such errors can be reliably generated even for today’s best per-
forming systems. I argued that the existence of these problems rules out the possibility that the
systems possess robust visual intelligence.

I investigated the nature of brittle failures of convolutional nets in experiments, detailed in
Chapter 2, in which I sought to isolate the minimum sets of features contained in natural images
that facilitate their classi�cation by a neural network. I conducted an experiment to determine
whether those minimal images were easily recognizable by people, and found that whether or
not they were depended surprisingly on the object class represented by the image. I supposed
that the problem used to measure performance, 1000-way image classi�cation in the case of the

111



6. Summary of Contributions

network under consideration, caused it to learn a classi�cation strategy that led to good measured
generalization without learning uniformly robust feature representations over all classes. I found
evidence for the supposed strategy in the relative magnitude of signals at the highest level in the
neural network.

I implemented an alignment-based vision system using a propagator mechanism. The system,
described in Chapter 4, can track pedestrians and use their measured heights and locations to
determine the location of the ground plane and the locations of occluding objects, within bounds.
The system allows information to propagate between objects that interact: information about a
known pedestrian height could a�ect the parameters of the ground plane, which in turn helps to
estimate the positions and heights of other pedestrians. A review of the e�ort to build the system
revealed insights, in Sections 4.4 and 4.4.5, into what to modify in the propagator architecture I
used, to support its application in low-level alignment.

The insights about the propagator architecture led me to implement a neural network system
for monocular depth estimation, with emphasis on realizing propagator-like capability in this
network. In those e�orts, detailed in Chapter 5, I developed methods to fortify against adver-
sarial examples, and to ensure that the network contained ports with interpretable signals. The
interpretable signals enabled a network trained for depth estimation to perform depth super-
resolution without retraining, by sharing information with an ally network via shared signals
communicated via the port. I anticipated future directions of this work to scale it to more chal-
lenging problems.

I see propagation as a metaphor for the scienti�c discovery process. Progress can be slow in
the �rst steps toward solving a di�cult problem. As more pieces of the solution fall into place, the
pace of discovery quickens. A densely-connected propagation graph encourages communication
and collaboration. I hope that as more people become interested in understanding the principles
of human visual intelligence, we can communicate eagerly, sharing partial solutions to accelerate
the pace of discovery of something that is beyond the grasp of our individual capabilities.

112



A. Appendix: Neural Network Methods

A Appendix: Neural Network Methods
Some of my work involved deep learning with neural networks. This technology has grown ex-
plosively in recent years, and although in many cases the results of applying deep learning to
perceptual tasks in AI speak for themselves, the process itself of applying deep learning success-
fully is often arcane. This process involves composing vast networks from an increasingly diverse
set of components, and choosing values for an ever-growing set of hyperparameters, whose in-
teractions are di�cult to predict, and sometimes even di�cult to quantify due to the prohibitive
combinatorics of their measurement. Making matters more complicated, the logistics of man-
aging large datasets and the details of e�cient distributed computation are unavoidable in any
endeavor to achieve results on par with the state of the art in deep learning. Many resources have
emerged to introduce the theory and practice of deep learning to people with varying levels of
experience in machine learning. I found that the shortest and most essential reading list consists
of Deep Learning by Goodfellow et al. [2016] and the UFLDL tutorials (Ng et al. [2013]). Addi-
tionally the TensorFlow software system (Abadi et al. [2015]) was indispensable to prototyping
neural networks. TensorFlow’s development is supported by a large team of industry experts,
and I found it to provide superior usability, performance, and features to other frameworks, such
as pioneering research framework Ca�e (Jia et al. [2014]), that I used in earlier work described in
Chapter 2.

A.1 Overview
In this appendix I share a more detailed presentation of techniques that I developed in the course
of my work with neural networks than would be possible without detracting from the structure of
Chapter 5. These techniques were hard-earned, and I hope that by sharing them I can help others
confronted with the daunting challenge of embarking on a deep-learning research endeavor. This
presentation includes techniques that were indispensable to the work described in Chapter 5 such
as the Batch Normalization Retro�t procedure I present in Section A.4, and techniques which I
developed but ended up setting aside, such as the method for bootstrapping fully-connected layers
that I present in Section A.2.

This appendix is a loosely organized collection of mostly independent subsections related to
some practicalities of designing deep learning systems. The topics covered range from software
design patterns that I found useful for prototyping deep learning systems, to essential practical
considerations required for e�cient implementation of promising techniques from the literature.
I also present some techniques that I found helpful in speeding up or otherwise enhancing training
of certain types of networks.

A.2 Bootstrapping fully-connected layers from convolutional layers
Convolutional networks o�er certain bene�ts over their less-constrained fully-connected (FC)
counterparts. When a network operates on data in which spatially adjacent samples exhibit much
greater correlation than distant samples, convolutional models naturally �t the data distribution
better because they waste no e�ort searching for patterns that exceed the spatial extent of the
convolution kernel. Additionally, because convolutional models reuse the same weights at many
spatial locations, they have e�ectively many more training examples per network weight than FC

113



Bootstrapping fully-connected layers from convolutional layers

layers have. As a result of these di�erences between convolutional and FC layers, convolutional
layers have lower feedforward computational cost, compact representation, and tend to train
faster than FC layers because they can make more e�cient use of each training example.

It is common practice to convert FC layers to convolutional layers after training, so that a
network with FC layers can be used, for example, for semantic segmentation procedures that re-
quire a class label for every pixel in an image. The procedure of converting fully connected layers
to convolutional layers was �rst described by Long et al. [2015]. I am not aware of any published
work on the inverse of this operation, however, in which a convolutional network is converted
to an FC network. Why would converting a convolutional layer to an FC layer be useful? The
intuition is as follows: suppose that we would like a layer in a neural network to learn a function
that we suspect is weakly local. That is, the output at a given location depends often on the input
in a neighborhood around that location, but sometimes on distant inputs as well. A convolutional
network can rapidly and e�ciently learn the local dependencies that constitute an approxima-
tion of this function, but such a network is incapable of learning the dependencies that exceed
the reach of the convolution kernel. An FC network, however, has to do a lot of work re-learning
the local dependencies at many locations as it cannot bene�t from weight sharing the way the
convolutional network can. Therefore, what if we could treat the network as convolutional until
it has learned the local dependencies, and then switch to treating it as fully connected so that it
can learn the non-local dependencies?

In my work with depth estimation I experimented with network architectures in which the
�nal stages of the network are FC and all preceding stages are convolutional. Such network orga-
nizations are common in the literature on both discriminitive and generative networks, but in the
generative case the fully connected layers have image-like outputs with a lot of locality, and so
they su�er from the ine�ciency I described. In the end, I found that fully convolutional networks
performed better than networks with a �nal FC layer, so I did not end up using the conversion
procedure described in this section, but I still expect this type of conversion to be useful in some
contexts. For example, in indoor depth-generating networks, global scene attributes such as �oor
and ceiling locations should create a strong bias for the depths of other objects in a room. In my
initial experiments with convolutional-FC networks, training achieved little qualitative progress
in several days on the 4-GPU system I used for training, whereas just a day of training a fully
convolutional network produced markedly better results. Converting the trained convolutional
layers to FC layers using the procedure described in this section produced marginally better re-
sults than the fully-convolutional system after only several more days of training. I ended up not
using it only because the marginal bene�ts attained did not outweigh the additional computa-
tional cost of the FC layers.

I present here a procedure to convert a convolutional layer to an FC layer. I provide self-
contained source code for doing the conversion along with an illustration generated directly
from the included source code.

The key to understanding the implementation is that convolutional layers are special cases of
fully-connected layers, in which the weights of non-local connections are zero, and the weights
of local connections are replicated across many network units. The process of converting a con-
volution kernel to an FC matrix is illustrated in Figure 43, which is generated by supplying an
example 5x5x1x1 kernel to the source code provided in Listing 2. The resulting matrix, when
multiplied by the row vector obtained by �attening the image in row-major form, produces a
result equivalent to convolving the 4x6 image with the supplied kernel. Because many of the

114



Bootstrapping fully-connected layers from convolutional layers

elements of the converted FC matrix are equal to zero, SGD would leave them unchanged and the
resulting FC layer could not learn relationships between spatially-distant signals. To account for
this and allow the FC layer to learn relationships between spatially-distant signals, the �nal step
in the procedure is to add small-magnitude zero-mean noise to the converted FC matrix before
continuing training in FC mode.

1 import numpy as np
2 def compose_blocks(blocks,grid_dimension):
3 block_shape = blocks[0].shape
4 pad = np.zeros_like(blocks[0])
5 if grid_dimension > len(blocks)/2+1:
6 padding = [pad]*(grid_dimension-len(blocks)/2+1)
7 else:
8 padding = []
9 padded = padding+blocks+padding

10 rows = []
11 for i in range(grid_dimension):
12 idx = len(padded)/2-i
13 assert idx>=0,idx
14 rows.append(np.concatenate(padded[idx:idx+grid_dimension],1))
15 return np.concatenate(rows,0)
16 def row_to_block(kern_row,conv_row_len):
17 row_blocks = [np.transpose(kern_row[i,:,:])\
18 for i in range(kern_row.shape[0])]
19 return compose_blocks(row_blocks,conv_row_len)
20 def conv_to_fc(K,rows,cols,additive_noise_factor=0.0):
21 """
22 K: conv kernel to turn into a fc matrix
23 rows,cols: dimensions of the input that would be convolved with K.
24 additive_noise_factor:
25 if non-zero, multiply the std dev of the convolution matrix
26 by additive_noise_factor, generate zero-mean Gaussian noise
27 with the resulting std dev, and add it to the convolution
28 matrix. this creates a small disturbance that makes learning
29 possible.
30
31 output: a matrix W such that reshape(matmul(flatten(X),W),rows,
32 cols) == conv2D(X,K)
33
34 K must be of shape [height,width,ins,outs] The mode of the
35 convolution is assumed to be SAME, so that a zero border is added
36 to x and the output of the convolution is also size rows,col.
37 Convolution is assumed to have spatial stride of 1.
38 The kernel width and height must be odd.
39 """
40 kh,kw,kin,kout = K.shape
41 assert kh>0 and kw>0,(kw,kh)
42 assert kh%2==1 and kw%2==1,(kw,kh)
43 hpad = kh/2
44 wpad = kw/2
45 superblocks = map(lambda row:row_to_block(row,cols),
46 [K[i,:,:,:] for i in range(kh)])
47 mat_conv = np.transpose(compose_blocks(superblocks,rows))
48 if additive_noise_factor:
49 var = np.var(K)
50 gen_scale = additive_noise_factor*np.sqrt(var)
51 additive_noise = np.random.normal(size=mat_conv.shape,
52 scale=gen_scale).astype(np.float32)
53 return mat_conv+additive_noise
54 else:
55 return mat_conv

Listing 2: Complete code to convert convolution kernel weights to FC matrix

115



Bootstrapping fully-connected layers from convolutional layers

Figure 43: Conversion of a convolutional layer to an FC layer

Example output of the provided code. The function conv_to_fc() applied to the supplied 5x5 kernel with
an input/output image size of 4x6 produces the fully-connected matrix shown. Gray areas have zero value.
In order to allow gradient-descent learning to learn non-local dependencies, small valued noise must be
added to the FC matrix before continuing to learn. The color maps used here were designed by Kovesi
[2015].

The process of converting convolutional layers to FC layers could prove useful in re�ning
generative networks that output a signal that is expected to have some degree of spatial local-
ity constraint, but that may have non-local interactions as well. An important caveat is that, in
such FC layers as these with many-to-many mappings, the computational cost is signi�cantly
increased from that of a convolutional layer with the same shape, and deep networks com-
posed of full-resolution fully connected layers could remain infeasible for a long time yet. When
special-purpose hardware for deep learning �nally becomes mainstream, I expect that the pro-
vided method of hybrid convolutional-FC training will be useful to someone.

116



Batch normalization on multi-GPU systems

A.3 Batch normalization on multi-GPU systems
Batch normalization improves optimization performance in deep networks by reducing internal
covariate shift (Io�e and Szegedy [2015]). Additionally, batch normalization provides a source
of regularization. Batch normalization relies on local statistics of mini-batches of data, and
its performance is sensitive to the mini-batch size. Unfortunately, batch size is also a crucial
performance-determining factor of GPU hardware, in which GPU memory is limited and trans-
fers to and from GPU memory constitute major performance bottlenecks. I developed modi�ca-
tions to the batch normalization algorithm that reduce the sensitivity of batch normalization to
batch size, so that limitations imposed by the hardware have reduced e�ects on the performance
of batch normalization.

A.3.1 Overview of batch normalization

This section provides a high-level overview of the mechanics of batch normalization. Refer to the
original paper by Io�e and Szegedy [2015] for detailed motivation and analysis of the technique.

As deep networks learn, the distributions of the internal signals change. This change can be
problematic when it causes nonlinearities within the network to saturate, driving their derivatives
toward zero. The e�ect of the small-magnitude derivatives is ampli�ed by the chain rule, leading
to a vanishing gradient and poor optimization performance. Poor optimization performance also
results when the internal signals have large variance, resulting in instability. Batch normalization
addresses these problems by approximately normalizing the internal signals of the network at
every training step. Because it would be computationally expensive to normalize the internal
signals according to the statistics of the entire dataset at every training step, batch normalization
uses statistics measured within the same mini-batch that is used in stochastic gradient descent.

In a batch-normalized network layer, batched inputs u are multiplied by a weight matrixW
to produce a batch ofD - dimensional intermediate signals x, and then a batch mean x and batch
standard deviation s are computed with respect to the elements of this batch of intermediate
signals. The process then computes the normalized intermediate signal x̂ by subtracting the
batch mean and dividing by the batch standard deviation (with numerical stabilization):

x̂d =
xd − xd
sd + ε

for d = 1...D (18)

The signal x̂ is then multiplied element-wise by a learned scale parameter γ and added to a
learned mean-shift parameter β, and �nally passed through a nonlinearity such as ReLU(·) to
produce the output, y.

y = ReLU(BNγ,β(x)) where BNγ,β(x) ≡ γ � x̂+ β (19)

The scale and mean-shift parameters γ and β are trained via backpropagation alongside the
weights. There are two additional parameters updated outside of the optimizer: the population
mean µ and the population variance σ2. These are used in inference mode in place of the batch

117



Batch normalization on multi-GPU systems

statistics, because in inference mode there may not be a batch of examples to compute statistics
from, and because it is desirable for the inference-mode output of the network for a given input
example to depend only on that example. Because parameters are �xed in inference mode, the
batch normalization becomes just an a�ne transformation of the input. Rather than compute
the true population statistics after training of the network is �nished, the batch normalization
method approximates these statistics by averaging them over recent training steps using a decay
constant, 0 < r < 1.

µt+1 = rµt + (1− r)xt (20)

σ2
t+1 = rσ2

t + (1− r)M + 1

M
s2t (21)

where s2 is the batch variance, M is the batch size, and t is the training step. Initialization of
the population statistics variables is unimportant because the population statistics do not a�ect
training of other variables, and the decay rate must be short enough to forget obsolete batch
statistics as the network learns and changes.

A.3.2 Modi�cations to the batch normalization algorithm

GPU memory size and the mechanics of TensorFlow models together impose severe constraints
on batch size for complex models. I found that for one adversarial network architecture with
a maximum depth of 38 layers, resource constraints precluded batch sizes of more than 12 ex-
amples per 8GB GPU module. Although SGD scales easily on a multi-GPU system via gradient
aggregation and averaging, batch normalization does not scale in an analogous way because syn-
chronizing batch statistics between GPUs would become a bottleneck. A batch size of 12 is at least
an order of magnitude below what is required to achieve learning stability in many cases, so I
modi�ed the batch normalization algorithm to be more stable with a smaller batch size.

The motivation for the approach I used to address the GPU memory issue was to simulate
batch augmentation with virtual examples, drawn from the global population, without having
to allocate memory for those additional examples. Speci�cally, I sought to simulate the e�ects
of adding M − m virtual examples to the small batch of size m, in order to have an e�ective
batch size of M , by estimating the statistics of a batch of size M from the true statistics of the
batch of size m and the approximate population statistics. If it were the case that the population
statistics variables perfectly represented the true population statistics, there would be no need
for batch statistics at all. Because the system is learning while the population statistics are being
aggregated, though, the variables do not contain the true population statistics at the current
training step. The batch examples are drawn from the true data distribution at the current training
step, but because the batch is so small, the statistics tend to be noisy. The key idea is to balance
these two imperfections.

Suppose there were no nonlinearity. Then by the de�nition of batch normalization, the β
parameter at layer ` − 1 could always predict the mean at layer ` by linear transformation with
the weight matrix: µ` = β`−1W `. Unfortunately, without knowing the shape of the distribution

118



Improving transfer learning with batch normalization retro�t

of the signal prior to application of the nonlinearity at layer `−1, this convenient linear method no
longer works in the presence of nonlinearity. Complicating matters further, there is no analogous
way to predict the variance at ` given only mean and variance at `− 1, regardless of whether the
layers contain nonlinearity functions.

Because there seems to be no �awless way to simulate the desired virtual batch of size M , I
engineered a workaround by adding an additional hyperparameter qbatch−augmentation (q for short,
within this section) that controls mixing of the batch statistics x and s with the running average
parameters µ and σ. For 0 ≤ q ≤ 1:

µq = qx+ (1− q)µ (22)

σq = qs+ (1− q)σ (23)

Then the parameters µq and σq are used respectively in place of x and s in the batch normal-
ization step described by Equation 18. In practice, the hyperparameter q seems to have a wide
range of values that permit stable optimization. For values of q that are too high, optimization is
unstable because of the small e�ective batch size. If q is set too low, and at high learning rates,
optimization also becomes unstable, possibly because of the time delay introduced.

A.4 Improving transfer learning with batch normalization retro�t
Deep feature learning from scratch requires large datasets and substantial computational re-
sources. If feature representations learned in the course of solving one type of problem are appli-
cable to another related problem, then it substantially improves learning e�ciency to bootstrap
the model intended to solve the new problem from the pre-trained network that does a good
job of solving the old problem. TensorFlow (Abadi et al. [2015]) and other deep learning frame-
works provide platforms for exchanging both model de�nitions and model parameters, making
such transfer learning from existing models even more appealing due to ease of implementation.
I used a transfer learning strategy to initialize my depth-map generating network from VGG19
(Simonyan and Zisserman [2014]), a network trained on ImageNet (Russakovsky et al. [2015a])
to classify images.

VGG19 was developed before the advent of batch normalization (Io�e and Szegedy [2015]),
a powerful technique that simultaneously provides regularization and reduces the problem of
gradient vanishing and explosion10. In the course of my work on bootstrapping depth-map gen-
erating networks from VGG19, I found evidence that the gradient used to train the network was
sometimes vanishing or exploding in magnitude, preventing optimization from making progress.
Table 3 exhibits the source of the problem: the large magnitude of both mean and variance of
signals deep within the VGG19 network. These signals are ampli�ed by the chain rule to produce
derivatives that are numerically unwieldy, causing poor optimization performance.

To resolve the numerical problems and to realize the regularization bene�ts of batch normal-
ization, I developed a method to retroactively add batch normalization layers to a pre-trained

10Refer to Section A.3.1 for a high-level overview of batch normalization.

119



Improving transfer learning with batch normalization retro�t

Table 3: Measured means and variances of VGG19 internal signals before application of
the BNR method

Signal Name Mean Variance
conv1-1 0.496474 4509.737572
conv1-2 65.376059 35687.675124
conv2-1 18.005497 103246.684329
conv2-2 -63.906908 185671.159189
conv3-1 -66.297716 213373.701530
conv3-2 26.901056 176315.584343
conv3-3 271.583564 231860.095653
conv3-4 280.161073 912472.986495
conv4-1 -29.205451 1929054.816164
conv4-2 -436.253971 1889933.679637
conv4-3 -501.170109 1096032.013281
conv4-4 -559.733211 343271.077189
conv5-1 -199.225413 114754.968813
conv5-2 -119.662537 28587.189274
conv5-3 -63.662626 7147.346738
conv5-4 -45.421317 1570.898368
fc6 -8.993336 191.871532
fc7 -2.295338 13.615358
fc8 -0.001482 8.129878

network without changing the function computed by the network. From here on I refer to this
method as batch normalization retro�t (BNR). BNR involves running a sample of inputs through
the original network and using measured statistics of that sample at each layer to derive initial
values for the γ, β, population mean, and population variance parameters of the batch normaliza-
tion layer such that the function computed by the new layer with batch normalization is identical
to that computed by the original layer, the mean activation of the new layer is close to zero, and
the variance of the activation of the new layer is close to one.

To motivate the derivation of BNR, let

xT
`−1W ` + b` = x` (24)

represent a simpli�ed version of the computation performed by a layer of a network withL layers,
where x0 is the input to the network and every x` is the output of layer `. The e�ects of non-
linearity and convolution are ignored, because they complicate the derivation of BNR without
contributing insight. The input to layer ` is x`,W ` is the weight matrix, and b` is the bias vector.
I compute the average activation x` of the neurons in layer ` by taking a sum over some large
number N of representative inputs:

120



Improving transfer learning with batch normalization retro�t

x` =
1

N

N∑
i=1

x
(i)
` (25)

and I compute a corresponding variance of the neurons in each layer `. Square brackets in the
subscript distinguish the vector index of D` -dimensional vector s` from the layer index, `.

s2`[d] =
1

N

N∑
i=1

(x`[d] − x(i)`[d])
2 (26)

The goal of BNR is to de�ne functions f`(·) to transform the inputs and outputs of each layer `,
and assign values to variables µ`, σ`, γ`, and β`, which are the parameters needed to de�ne the
batch-normalized version of layer `. The batch-normalized form of layer ` can be written as

(
f`−1(x`−1)

TW ` − µ`

)
� 1

σ` + ε
� γ` + β` = f`(x`) (27)

in which the notational abbreviation 1
σ`+ε

is used to indicate the numerically-stabilized element-
wise reciprocal of the population standard deviation vector σ`. The de�nitions and variable as-
signments must satisfy the following requirements:

• The whole network in BN form must compute the same function as the original network.

• The values of the batch-normalization population mean, µ`, and the batch-normalization
population standard deviation, σ`, are small enough to mitigate the e�ects of gradient ex-
plosion or vanishing in training the multi-layer network.

• The values assigned to µ` and σ` are the true population mean and standard deviation,
respectively, of the transformed layer.

The requirement that the true population statistics are assigned to the population mean and
population standard deviation variables used by batch normalization is what makes the problem
of BNR interesting; ignoring this requirement would make it trivial to transform network layers
to layers that super�cially function like batch normalized layers in inference mode, but unless all
of the variable assignments are consistent with the true statistics of the transformed layer, batch
normalization would fail in training mode, where the population mean and variance variables are
not applied, and mini-batch statistics recomputed at every training step are used in their places.

I de�ne f`(·), the transformation functions applied to the internal signals of each layer of the
network, as follows:

f`(x`) ≡ c`x` (28)

121



Improving transfer learning with batch normalization retro�t

That is, the input to each layer in the network is transformed in an analogous way throughout
the network, and the transformation (which is achieved by the previous layer) is linear. For each
layer `, c` is de�ned as:

c` ≡
D`∑D`

d=1 s`[d]
if ` > 0, otherwise 1 (29)

The choice to transform signals in the network by a scalar multiplication rather than try to nor-
malize the vector components independently was due to the observation that some pre-trained
networks contain “dead” units that have a standard deviation of zero. In practice, the resulting
approximation of batch statistics that results from this scalar transformation is close enough to
the true statistics to keep things stable during training.

The batch-normalization parameters are then initialized as:

µ` ≡ c`−1(x` − b`) (30)

σ` ≡ c`−1s` (31)

γ` ≡ c`s` (32)

β` ≡ c`x` (33)

Substituting these parameter de�nitions into Equation 27 and ignoring ε, a small value used for
numerical stabilization, yields the original (non-batch-normalized) form of Equation 24, multi-
plied by c`. To satisfy the requirement that the network converted to batch-normalized form
compute the same function as the original network, we can divide the output of the last stage
by cL. The requirement that the conversion mitigate the numerical problems of the non-batch-
normalized network is empirically true for all networks tested; despite that the output of each
layer is still not zero mean and unit variance, the constant scaling by c` at each layer results in
optimization performance that is superior to that of the original network. It is straightforward to
show that the mean and variance of the transformed network prior to scaling by γ` and shifting
by β` are approximately equal to µ` and σ` as de�ned above, satisfying the �nal requirement
that ensures that the behavior of the batch-normalized layer will be correct in training mode.

The BNR method was immensely useful in making pre-trained models that did not include
batch normalization more agile for transfer learning, by improving optimization performance,
adding additional regularization, and permitting faster learning rates to be used. Table 4 exhibits
the means and variances of internal signals after application of BNR.

122



Neural network prototyping design issues

Table 4: Means and variances of VGG19 internal signals after application of the BNR
method

Signal Name Mean Variance
conv1-1 0.000112 0.069354
conv1-2 1.080532 9.761540
conv2-1 0.100548 3.258533
conv2-2 -0.207117 1.949663
conv3-1 -0.158944 1.225799
conv3-2 0.060037 0.881015
conv3-3 0.663601 1.384752
conv3-4 0.597524 4.151195
conv4-1 -0.031359 2.222103
conv4-2 -0.322884 1.035226
conv4-3 -0.371230 0.601322
conv4-4 -0.539286 0.318628
conv5-1 -0.341557 0.337199
conv5-2 -0.356291 0.253157
conv5-3 -0.379521 0.253580
conv5-4 -0.543064 0.222872
fc6 -0.230674 0.124072
fc7 -0.203100 0.071800
fc8 -0.000400 0.601449

A.5 Neural network prototyping design issues
TensorFlow (Abadi et al. [2015]) is a powerful tool for expressing computations and implementing
machine learning systems. It has Python bindings for rapid prototyping, it supports heteroge-
neous and distributed computer architectures for scalability, and it is developed and maintained
by machine-learning and distributed-systems experts. While TensorFlow was an invaluable tool
in this work, it did not provide a complete solution to all problems I faced. I developed ad-
ditional sca�olding and design patterns to facilitate my work, particularly to help isolate and
control sources of error and variation when designing new models, and to manage large training
datasets. In this section I describe several of the patterns and sca�olding components I found
most useful for development, in the hope that they may be useful to others as well.

The challenge in engineering the components I needed in this project was to create strong
enough abstractions to isolate the hyperparameters of the learning system from one another
and from external factors such as hardware constraints and e�ciency concerns. Section A.3
describes one especially problematic case in which I needed to modify a learning algorithm from
the literature in order to accommodate the constraints of GPU hardware. There are many other
ways in which hardware and learning models interact, and my development e�ort was guided by
the following design criteria:

• Hardware con�guration may a�ect speed of the learning algorithm but not other aspects,
e.g., convergence or stability.

123



Neural network prototyping design issues

• Degree of data and model parallelism should be independently controllable without modi-
�cation to the network speci�cation.

• Speci�cation of the training algorithm should not depend on hardware con�guration. For
example, the modules controlling whether we train a generative adversarial network, a
classi�er, or some other type of network should be well abstracted from the modules con-
trolling what type of hardware is used and how it is con�gured.

• File-system read speed should not present a major bottleneck for training models.

• Saving and restoring models must be well separated from all other concerns, but,

– saved models should be easy to manipulate and modify, and,
– it must be straightforward to initialize a new model from saved weights originating

from one or more previously trained models.

My sca�olding for training models is factored mainly into trainers, networks, and data pipeline
elements. Network instances build segments of neural network within device contexts established
by trainer instances. Trainer instances are responsible for setup and tear-down, and application
of SGD optimization and other learning requirements of networks such as update of global statis-
tics variables used in batch normalization. Data pipeline elements provide a common interface
for retrieving a batch of data from bu�ers, disks, over a network, etc., so that the details of routing
data into and out of neural network segments are easy to con�gure.

Trainers are described by a handful of classes that work like nouns, and several functions of
type class −→ class that work like adjectives. The noun-adjective idiom provides a convenient
way to describe the purpose and hierarchical structure of a subclass compactly. For example, a
trainer with a control algorithm for generative adversarial networks that uses data parallelism
across 4 GPUs might be de�ned as:

1 MyTrainerSubclass = adversarial(multiGPU(4)(Trainer))

or, using Python’s class-decorator syntax:

1 @adversarial
2 @multiGPU(4)
3 class MyTrainerSubclass2(Trainer):
4 ...

The default Trainer expects to train a network with a single loss on one GPU. Other trainer classes
exist for testing purposes. The list of adjectives includes:

• adversarial, which modi�es the control algorithm to switch between training the gener-
ator and the adversary in a GAN, at intervals con�gurable via hyperparameters.

• multiGPU, which achieves data parallelism by creating many identical, parameter-sharing
models on a multi-GPU system. The optimizing strategy is overridden to average the gra-
dients from each GPU.

124



Neural network prototyping design issues

• batchSequencing, which divides the batch and averages gradients over several time steps
to achieve a larger e�ective batch size for SGD; this class is necessary to avoid memory
errors because TensorFlow cannot automatically split up batches that do not �t in GPU
memory.

• multiSegment, which achieves model parallelism by splitting up neural networks across
several devices to accommodate larger networks than would �t on a single device. It takes
into account available DMA channels to con�gure the networks as e�ciently as possible.

The multiSegment adjective works by dividing the number of separable units, Nu, of its network
by the number of devices to use per network, Nd, and entering the network’s build co-routine
approximately Nu/Nd times within each TensorFlow device context created for each device. The
build co-routine is responsible for ensuring that the network blocks wired up between each of
the co-routine’s yield statements are roughly consistent in size. The multiSegment adjective is
used in conjunction with multiGPU to achieve model and data parallelism simultaneously.

The noun-adjective idiom for trainer modules makes it easy to design exhaustive tests for all
meaningful combinations of trainer functionality, for example by training the same deterministically-
initialized test network on many trainer con�gurations and ensuring that the results match. In
deep learning experiments it is essential to have an extensively tested sca�olding like this, oth-
erwise subtle inconsistencies introduced by the training methods will have compounding and
unpredictable consequences.

To ful�ll my design requirements for saved models, I relied mostly on TensorFlow’s saving
mechanism, with modi�cations to how saved models are restored. TensorFlow’s saver, by default,
throws an error if the parameters in the checkpoint �le do not exactly match the variables in
the current graph. I modi�ed this behavior via a wrapper class to optimistically restore from
checkpoint �les; that is, restore variables when a mapping exists, discard unused variables in
the checkpoint �le, and initialize from scratch those variables that are not restored. This makes
the exploratory process of designing new networks using pre-trained pieces of existing networks
less cumbersome than in the default con�guration. I also provided a convenient shorthand for
migrating variables from one namespace to another, further reducing the burden of stored-model
management for evolving models.

To address problems related to dataset management I designed a simple system of classes
providing a pipeline abstraction that is easily con�gured to run in-process for fast transfer rate,
or out of process for lower start-up latency from queue-�lling when debugging a network. The
data pipeline balances CPU-intensive post-processing such as image-patch rotation and scaling
with �le-system waits and GPU intensive work to avoid idle time. This balancing alone was not
enough to solve the latency problems: pro�ling during training of my depth-estimation network
with simple FIFO queues revealed that disk read time accounted for 93% of program execution
time. I resolved this by reading training data into a large ring bu�er in memory. The dataset is
constantly sampled randomly and added to the ring bu�er while the oldest examples are removed,
and training batches are produced by randomly sampling from the memory-resident bu�er. To
mitigate over�tting this slowly-varying window, the pipeline applies data augmentation such
as random cropping, scaling, and rotation whenever examples are retrieved from the bu�er, as
described in Section 5.6.1. In expanded form, the NYU Depth dataset (Silberman et al. [2012])
used for training is over 500GB in size and a memory bu�er size of 22GB produced initial loss
curves similar to those obtained from training on the whole dataset.

125



126



Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geo�rey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensor�ow.org.

Juan D. Adarve and Robert Mahony. A Filter Formulation for Computing Real Time Optical
Flow. IEEE Robotics and Automation Letters, 1(2):1192–1199, July 2016. ISSN 2377-3766. doi:
10.1109/LRA.2016.2532928.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2425–2433, 2015. URL
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Antol_VQA_
Visual_Question_ICCV_2015_paper.html.

Andrei Barbu, Aaron Michaux, Siddharth Narayanaswamy, and Je�rey Mark Siskind. Simultane-
ous Object Detection, Tracking, and Event Recognition. arXiv:1204.2741 [cs], April 2012. URL
http://arxiv.org/abs/1204.2741. arXiv: 1204.2741.

Daniel Paul Barrett, Andrei Barbu, N. Siddharth, and Je�rey Mark Siskind. Saying What
You’re Looking For: Linguistics Meets Video Search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(10):2069–2081, October 2016. ISSN 0162-8828, 2160-9292. doi:
10.1109/TPAMI.2015.2505297. URL http://ieeexplore.ieee.org/document/7346469/.

Jacob Stuart Michael Beal. Learning by learning to communicate. PhD thesis, Massachusetts
Institute of Technology, 2007.

Guy Ben-Yosef, Liav Assif, Daniel Harari, and Shimon Ullman. A model for full local im-
age interpretation. In CogSci, 2015. URL https://pdfs.semanticscholar.org/ca8c/
3c616b757b77eba6d8689d5f1ca57d6b81ca.pdf.

127

https://www.tensorflow.org/
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html
http://arxiv.org/abs/1204.2741
http://ieeexplore.ieee.org/document/7346469/
https://pdfs.semanticscholar.org/ca8c/3c616b757b77eba6d8689d5f1ca57d6b81ca.pdf
https://pdfs.semanticscholar.org/ca8c/3c616b757b77eba6d8689d5f1ca57d6b81ca.pdf


Barry W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Ray Madachy, and Bert Steece. Soft-
ware Cost Estimation with COCOMO II. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 2000. ISBN 0130266922.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs.
arXiv:1412.7062 [cs], December 2014. URL http://arxiv.org/abs/1412.7062. arXiv:
1412.7062.

Michael Coen. Multimodal Dynamics: Self-Supervised Learning in Perceptual and Motor Systems.
PhD thesis, Massachusetts Institute of Technology, May 2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 248–255. IEEE, 2009.

Steve Dent. Google’s AI is getting really good at captioning photos. en-
gadget.com, Sep 2016. URL https://www.engadget.com/2016/09/23/
googles-ai-is-getting-really-good-at-captioning-photos/.

Je� Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial Feature Learning.
arXiv:1605.09782 [cs, stat], May 2016. URL http://arxiv.org/abs/1605.09782. arXiv:
1605.09782.

David Eigen and Rob Fergus. Predicting Depth, Surface Normals and Semantic Labels with a
Common Multi-Scale Convolutional Architecture. arXiv:1411.4734 [cs], November 2014. URL
http://arxiv.org/abs/1411.4734. arXiv: 1411.4734.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction from a Single Image
using a Multi-Scale Deep Network. arXiv:1406.2283 [cs], June 2014. URL http://arxiv.org/
abs/1406.2283. arXiv: 1406.2283.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. The MIT Press, Cambridge,
MA; London, May 1998. ISBN 978-0-262-06197-1. URL http://mitpress.mit.edu/catalog/
item/default.asp?ttype=2&tid=8106.

Yoav Freund and Robert E.gir Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences, 55(1):119 –
139, 1997. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL http://www.
sciencedirect.com/science/article/pii/S002200009791504X.

Ross Girshick. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision (ICCV),
pages 1440–1448, December 2015. doi: 10.1109/ICCV.2015.169.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural In-
formation Processing Systems, pages 2672–2680, 2014a. URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.

128

http://arxiv.org/abs/1412.7062
https://www.engadget.com/2016/09/23/googles-ai-is-getting-really-good-at-captioning-photos/
https://www.engadget.com/2016/09/23/googles-ai-is-getting-really-good-at-captioning-photos/
http://arxiv.org/abs/1605.09782
http://arxiv.org/abs/1411.4734
http://arxiv.org/abs/1406.2283
http://arxiv.org/abs/1406.2283
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8106
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8106
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets


Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversar-
ial Examples. arXiv:1412.6572 [cs, stat], December 2014b. URL http://arxiv.org/abs/1412.
6572. arXiv: 1412.6572.

Noah Goodman, Vikash Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum.
Church: A language for generative models. arXiv:1206.3255 [cs], June 2012. URL http://
arxiv.org/abs/1206.3255. arXiv: 1206.3255.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
age Recognition. arXiv:1512.03385 [cs], December 2015. URL http://arxiv.org/abs/1512.
03385. arXiv: 1512.03385.

Geo�rey Hinton. A practical guide to training restricted Boltzmann machines. Technical report,
Department of Computer Science, University of Toronto, Toronto, Canada, 2010.

Geo�rey E. Hinton. Relaxation and its role in vision. PhD thesis, Edinburgh University, 1978.

Geo�rey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

Geo�rey E. Hinton and Ruslan R. Salakhutdinov. Reducing the Dimensionality of Data with Neu-
ral Networks. Science, 313(5786):502–507, July 2006. ISSN 0036-8075, 1095-9203. doi: 10.1126/
science.1129198. URL http://www.sciencemag.org/cgi/doi/10.1126/science.1129198.

Geo�rey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006. URL http://www.mitpressjournals.org/
doi/abs/10.1162/neco.2006.18.7.1527.

Derek Hoiem, Alexei A. Efros, and Martial Hebert. Automatic photo pop-up. ACM transactions
on graphics (TOG), 24(3):577–584, 2005.

Berthold K. P. Horn and Michael J. Brooks. Shape from Shading. MIT Press, Cambridge, MA, 1989.

Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.
press/v37/ioffe15.html.

Itseez. Open source computer vision library. https://github.com/itseez/opencv, 2015.

Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Ca�e: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scienti�c tools for Python,
2001–. URL http://www.scipy.org/. [Online; accessed 7/4/2017].

129

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://www.sciencemag.org/cgi/doi/10.1126/science.1129198
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://github.com/itseez/opencv
http://www.scipy.org/


Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs], December 2014. URL http://arxiv.org/abs/1412.6980. arXiv: 1412.6980.

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via In�uence Functions.
arXiv:1703.04730 [cs, stat], March 2017. URL http://arxiv.org/abs/1703.04730. arXiv:
1703.04730.

Peter Kovesi. Good Colour Maps: How to Design Them. arXiv:1509.03700 [cs], September 2015.
URL http://arxiv.org/abs/1509.03700. arXiv: 1509.03700.

Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. ImageNet classi�cation with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–
1105, 2012.

Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-Supervised Deep Learning for Monoc-
ular Depth Map Prediction. arXiv:1702.02706 [cs], February 2017. URL http://arxiv.org/
abs/1702.02706. arXiv: 1702.02706.

L’ubor Ladický, Jianbo Shi, and Marc Pollefeys. Pulling Things out of Perspective. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages 89–96, June 2014. doi: 10.1109/
CVPR.2014.19.

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab.
Deeper Depth Prediction with Fully Convolutional Residual Networks. arXiv:1606.00373 [cs],
June 2016. URL http://arxiv.org/abs/1606.00373. arXiv: 1606.00373.

Bo Li, Chunhua Shen, Yuchao Dai, A. van den Hengel, and Mingyi He. Depth and surface normal
estimation from monocular images using regression on deep features and hierarchical CRFs.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1119–1127,
June 2015. doi: 10.1109/CVPR.2015.7298715.

Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. Learning Depth from Single Monocular
Images Using Deep Convolutional Neural Fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(10):2024–2039, October 2016. ISSN 0162-8828. doi: 10.1109/TPAMI.
2015.2505283.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3431–3440, 2015. URL http://www.cv-foundation.org/openaccess/content_cvpr_
2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html.

Jack M. Loomis. Looking down is looking up. Nature, 414(6860):155–156, 2001.

John Marko�. Researchers Announce Advance in Image-Recognition Software. The
New York Times, Nov 2014. URL https://www.nytimes.com/2014/11/18/science/
researchers-announce-breakthrough-in-content-recognition-software.html.

David Marr. Vision: A Computational Investigation Into the Human Representation and Processing
of Visual Information. MIT Press, 2010. ISBN 9780262514620.

130

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.04730
http://arxiv.org/abs/1509.03700
http://arxiv.org/abs/1702.02706
http://arxiv.org/abs/1702.02706
http://arxiv.org/abs/1606.00373
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.nytimes.com/2014/11/18/science/researchers-announce-breakthrough-in-content-recognition-software.html
https://www.nytimes.com/2014/11/18/science/researchers-announce-breakthrough-in-content-recognition-software.html


David A. McAllester. A three valued truth maintenance system. Technical report, Massachusetts
Institute of Technology Arti�cial Intelligence Laboratory, 1978.

Harry McGurk and John MacDonald. Hearing lips and seeing voices. Nature, 264:746, December
1976. URL http://dx.doi.org/10.1038/264746a0.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. arXiv:1610.08401 [cs, stat], October 2016. URL http://arxiv.org/
abs/1610.08401. arXiv: 1610.08401.

Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, and Caroline Suen. UFLDL Tutorial, 2013.
URL http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. Mul-
timodal deep learning. In Proceedings of the 28th International Conference on Machine Learn-
ing (ICML-11), pages 689–696, 2011. URL http://machinelearning.wustl.edu/mlpapers/
paper_files/ICML2011Ngiam_399.pdf.

Anh Nguyen, Jason Yosinski, and Je� Clune. Deep neural networks are easily fooled: High con-
�dence predictions for unrecognizable images. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pages 427–436. IEEE, 2015.

Teng Leng Ooi, Bing Wu, and Zijiang J. He. Distance determined by the angular declination
below the horizon. Nature, 414(6860):197–200, 2001.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the di�culty of training Recurrent
Neural Networks. arXiv:1211.5063 [cs], November 2012. URL http://arxiv.org/abs/1211.
5063. arXiv: 1211.5063.

Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan. Learning
Features by Watching Objects Move. arXiv:1612.06370 [cs, stat], December 2016. URL http:
//arxiv.org/abs/1612.06370. arXiv: 1612.06370.

Alexey Radul. Propagation Networks: A Flexible and Expressive Substrate for Computation. PhD
thesis, Massachusetts Institute of Technology, 2009.

Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Epic�ow: Edge-
preserving interpolation of correspondences for optical �ow. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1164–1172, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015a. doi: 10.1007/s11263-015-0816-y.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale vi-
sual recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015b.

131

http://dx.doi.org/10.1038/264746a0
http://arxiv.org/abs/1610.08401
http://arxiv.org/abs/1610.08401
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Ngiam_399.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Ngiam_399.pdf
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1612.06370
http://arxiv.org/abs/1612.06370


Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3D: Depth Perception from a Single Still
Image. In AAAI, pages 1571–1576, 2008.

Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann Le-
Cun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Net-
works. arXiv:1312.6229 [cs], December 2013. URL http://arxiv.org/abs/1312.6229. arXiv:
1312.6229.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully Convolutional Networks for Semantic
Segmentation. arXiv:1605.06211 [cs], May 2016. URL http://arxiv.org/abs/1605.06211.
arXiv: 1605.06211.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and
support inference from RGBD images. Computer Vision–ECCV 2012, pages 746–760, 2012.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv:1409.1556 [cs], September 2014. URL http://arxiv.org/abs/1409.
1556. arXiv: 1409.1556.

Je�rey Siskind and Quaid Morris. A maximum-likelihood approach to visual event classi�ca-
tion. Computer Vision—ECCV’96, pages 347–360, 1996. URL http://www.springerlink.com/
index/7008747l42073u0q.pdf.

Je�rey Mark Siskind. Grounding language in perception. In Integration of Natural Language and
Vision Processing, pages 207–227. Springer, 1995. URL http://link.springer.com/chapter/
10.1007/978-94-011-0273-5_12.

Nitish Srivastava and Ruslan R. Salakhutdinov. Multimodal learning with
deep Boltzmann machines. In Advances in neural information process-
ing systems, pages 2222–2230, 2012. URL http://papers.nips.cc/paper/
4683-multimodal-learning-with-deep-boltzmann-machines.

Richard M. Stallman and Gerald J. Sussman. Forward reasoning and dependency-directed back-
tracking in a system for computer-aided circuit analysis. Arti�cial Intelligence, 9(2):135 –
196, 1977. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(77)90029-7. URL http:
//www.sciencedirect.com/science/article/pii/0004370277900297.

Chris Stau�er and W. E. L. Grimson. Adaptive background mixture models for real-time track-
ing. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (Cat. No PR00149), volume 2, page 252 Vol. 2, 1999. doi: 10.1109/CVPR.1999.784637.

Gerald Jay Sussman and Alexey Radul. The Art of the Propagator. Technical Report MIT-CSAIL-
TR-2009-002, MIT Computer Science and Arti�cial Intelligence Laboratory, 2009.

Gerald Jay Sussman and Guy Lewis Steele. CONSTRAINTS—A language for expressing almost-
hierarchical descriptions. Arti�cial Intelligence, 14(1):1–39, 1980.

132

http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1605.06211
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://www.springerlink.com/index/7008747l42073u0q.pdf
http://www.springerlink.com/index/7008747l42073u0q.pdf
http://link.springer.com/chapter/10.1007/978-94-011-0273-5_12
http://link.springer.com/chapter/10.1007/978-94-011-0273-5_12
http://papers.nips.cc/paper/4683-multimodal-learning-with-deep-boltzmann-machines
http://papers.nips.cc/paper/4683-multimodal-learning-with-deep-boltzmann-machines
http://www.sciencedirect.com/science/article/pii/0004370277900297
http://www.sciencedirect.com/science/article/pii/0004370277900297


Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

Shimon Ullman. Sequence-seeking and counter streams: A model for information processing in
the cortex. Memo 1311, Arti�cial Intelligence Laboratory, MIT, 1991.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 1, pages 511–518. IEEE, 2001.

Andrew J. Viterbi. Convolutional Codes and Their Performance in Communication Systems. IEEE
Transactions on Communication Technology, 19(5):751–772, October 1971. ISSN 0018-9332. doi:
10.1109/TCOM.1971.1090700.

David L. Waltz. Generating Semantic Descriptions From Drawings of Scenes With Shadows. PhD
thesis, Cambridge MA, 1972.

Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid. DeepFlow: Large
Displacement Optical Flow with Deep Matching. pages 1385–1392. IEEE, December 2013.
ISBN 978-1-4799-2840-8. doi: 10.1109/ICCV.2013.175. URL http://ieeexplore.ieee.org/
document/6751282/.

Patrick Henry Winston. Arti�cial Intelligence. Addison-Wesley, third edition, 1992. ISBN
0201533774.

Patrick Henry Winston. The Genesis story understanding and story telling system: A 21st cen-
tury step toward arti�cial intelligence. Memo 019, Center for Brains Minds and Machines, MIT,
2014.

Patrick Henry Winston and Dylan Holmes. The Genesis manifesto: Story understanding and
human intelligence. In preparation., 2018.

Ramin Zabih. Dependency-directed backtracking in non-deterministic Scheme. 1988.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv:1611.03530 [cs], November 2016a. URL
http://arxiv.org/abs/1611.03530. arXiv: 1611.03530.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-Brain Autoencoders: Unsupervised
Learning by Cross-Channel Prediction. arXiv:1611.09842 [cs], November 2016b. URL http:
//arxiv.org/abs/1611.09842. arXiv: 1611.09842.

Zoran Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In Pro-
ceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., volume 2,
pages 28–31 Vol.2, August 2004. doi: 10.1109/ICPR.2004.1333992.

133

http://ieeexplore.ieee.org/document/6751282/
http://ieeexplore.ieee.org/document/6751282/
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.09842
http://arxiv.org/abs/1611.09842


Zoran Zivkovic and Ferdinand van der Heijden. E�cient adaptive density estimation per image
pixel for the task of background subtraction. Pattern Recognition Letters, 27(7):773–780, May
2006. ISSN 01678655. doi: 10.1016/j.patrec.2005.11.005. URL http://linkinghub.elsevier.
com/retrieve/pii/S0167865505003521.

Daniel Zoran, Phillip Isola, Dilip Krishnan, and William T. Freeman. Learning ordinal relation-
ships for mid-level vision. In Proceedings of the IEEE International Conference on Computer
Vision, pages 388–396, 2015. URL http://www.cv-foundation.org/openaccess/content_
iccv_2015/html/Zoran_Learning_Ordinal_Relationships_ICCV_2015_paper.html.

134

http://linkinghub.elsevier.com/retrieve/pii/S0167865505003521
http://linkinghub.elsevier.com/retrieve/pii/S0167865505003521
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zoran_Learning_Ordinal_Relationships_ICCV_2015_paper.html
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zoran_Learning_Ordinal_Relationships_ICCV_2015_paper.html

	Vision
	Motivation
	Mechanisms of alignment
	Propagator networks
	Probabilistic graphical models
	Restricted Boltzmann machines
	Neural networks

	Testing ground
	Problems not to use, and why
	Problems to use, and why

	Overview

	Characterizing Neural Net Classification
	Introduction
	Methods
	Network models and images
	signal-energy reduction algorithm
	Reduction algorithm design issues

	Results
	Discussion
	Descriptiveness of DCNN models
	Class specificity of model descriptiveness
	Ruling out alternatives: a DCNN strategy
	Implications

	Contributions

	Foundational Work in Constraint Propagation
	Introduction
	Observations about constraint propagation systems
	Applications of constraint propagation in vision
	Shape from shading
	Waltz's 3D-labeling procedure
	Hinton's work on relaxation

	The propagator architecture
	Summary

	Processing a Scene with Propagators
	Introduction
	Experimental setup
	Implementation details
	Abstractions
	Locating foreground regions
	Tracking objects

	Discussion
	Scarcity of strong constraints
	Brittleness of logical absolutes
	Incorrigibility
	Problems of scale
	Where to go next

	Contributions

	Building Neural Networks for Alignment
	Introduction
	Problem statement
	Related work
	Approach
	Fortification against adversarial examples
	Semantically meaningful ports
	Empirically successful foundation

	Implementation
	Experiments
	Training infrastructure
	Training data
	Training particulars
	Evaluation
	External signal introduction

	Discussion
	Extending ally networks
	Applying immutable differentiable joints

	Contributions

	Summary of Contributions
	Appendix: Neural Network Methods
	Overview
	Bootstrapping fully-connected layers from convolutional layers
	Batch normalization on multi-GPU systems
	Overview of batch normalization
	Modifications to the batch normalization algorithm

	Improving transfer learning with batch normalization retrofit
	Neural network prototyping design issues


